Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Microscopic dynamical features in the relaxation of glass structures are one of the most important unsolved problems in condensed matter physics. Although the structural relaxation processes in the vicinity of glass transition temperature are phenomenologically expressed by the Kohlrausch-Williams-Watts function and the relaxation time can be successfully interpreted by Adam-Gibbs theory and/or Narayanaswamy's model, the atomic rearrangement, which is the origin of the volume change, and its driving force have not been elucidated. Using the microsecond time-scale molecular dynamics simulations, this study provides insights to quantitatively determine the origin of the thermal shrinkage below Tg in a soda-lime silicate glass. We found that during annealing below Tg, Na ions penetrate into the six-membered silicate rings, which remedies the acute O-O-O angles of the energetically unstable rings. The ring structure change makes the space to possess the cation inside the rings, but the ring volume is eventually reduced, which results in thermal shrinkage of the soda-lime silica glass. In conclusion, the dynamical structural relaxation due to the cation displacement evokes the overall volume relaxation at low temperature in the glassy material.Ultrafast tunnel ionization enables femtosecond time-resolved dynamic measurements of the retro-Diels-Alder reactions of positively charged cyclohexene, norbornene, and dicyclopentadiene. Unlike the reaction times of 500-600 ps that are observed following UV excitation of neutral species, on the ionic potential energy surfaces, these reactions occur on a single picosecond timescale and, in some cases, exhibit vibrational coherence. In the case of norbornene, a 270 cm-1 vibrational mode is found to modulate the retro-Diels-Alder reaction.The thermal behaviors of ligand-protected metal clusters, [Au9(PPh3)8]3+ and [MAu8(PPh3)8]2+ (M = Pd, Pt) with a crown-motif structure, were investigated to determine the effects of the gas composition, single-atom doping, and counter anions on the thermal stability of these clusters. We successfully synthesized crown-motif [PdAu8(PPh3)8][HPMo12O40] (PdAu8-PMo12) and [PtAu8(PPh3)8][HPMo12O40] (PtAu8-PMo12) salts with a cesium-chloride-type structure, which is the same as the [Au9(PPh3)8][PMo12O40] (Au9-PMo12) structure. Thermogravimetry-differential thermal analysis/mass spectrometry analysis revealed that the crown-motif structure of Au9-PMo12 was decomposed at ∼475 K without weight loss to form Au nanoparticles. After structural decomposition, the ligands were desorbed from the sample. The ligand desorption temperature of Au9-PMo12 increased under 20% O2 conditions because of the formation of Au nanoparticles and stronger interaction of the formed O=PPh3 than PPh3. this website The Pd and Pt single-atom doping improved the thermal stability of the clusters. This improvement was due to the formation of a large bonding index of M-Au and a change in Au-PPh3 bonding energy by heteroatom doping. Moreover, we found that the ligand desorption temperatures were also affected by the type of counter anions, whose charge and size influence the localized Coulomb interaction and cluster packing between the cationic ligand-protected metal clusters and counter anions.Proteins are complex, heterogeneous macromolecules that exist as ensembles of interconverting states on a complex energy landscape. A complete, molecular-level understanding of their function requires experimental tools to characterize them with high spatial and temporal precision. Infrared (IR) spectroscopy has an inherently fast time scale that can capture all states and their dynamics with, in principle, bond-specific spatial resolution. Two-dimensional (2D) IR methods that provide richer information are becoming more routine but remain challenging to apply to proteins. Spectral congestion typically prevents selective investigation of native vibrations; however, the problem can be overcome by site-specific introduction of amino acid side chains that have vibrational groups with frequencies in the "transparent window" of protein spectra. This Perspective provides an overview of the history and recent progress in the development of transparent window 2D IR of proteins.Recent advances in techniques for generating quantum light have stimulated research on novel spectroscopic measurements using quantum entangled photons. One such spectroscopy technique utilizes non-classical correlations among entangled photons to enable measurements with enhanced sensitivity and selectivity. Here, we investigate the spectroscopic measurement utilizing entangled three photons. In this measurement, time-resolved entangled photon spectroscopy with monochromatic pumping [A. Ishizaki, J. Chem. Phys. 153, 051102 (2020)] is integrated with the frequency-dispersed two-photon counting technique, which suppresses undesired accidental photon counts in the detector and thus allows one to separate the weak desired signal. This time-resolved frequency-dispersed two-photon counting signal, which is a function of two frequencies, is shown to provide the same information as that of coherent two-dimensional optical spectra. The spectral distribution of the phase-matching function works as a frequency filter to selectively resolve a specific region of the two-dimensional spectra, whereas the excited-state dynamics under investigation are temporally resolved in the time region longer than the entanglement time. The signal is not subject to Fourier limitations on the joint temporal and spectral resolution, and therefore, it is expected to be useful for investigating complex molecular systems in which multiple electronic states are present within a narrow energy range.The world desperately needs new technologies and solutions for gas capture and separation. To make this possible, molecular modeling is applied here to investigate the structural, thermodynamic, and dynamical properties of a model for the poly(urethane urea) (PUU) oligomer model to selectively capture CO2 in the presence of CH4. In this work, we applied a well-known approach to derive atomic partial charges for atoms in a polymer chain based on self-consistent sampling using quantum chemistry and stochastic dynamics. The interactions of the gases with the PUU model were studied in a pure gas based system as well as in a gas mixture. A detailed structure characterization revealed high interaction of CO2 molecules with the hard segments of the PUU. Therefore, the structural and energy properties explain the reasons for the greater CO2 sorption than CH4. We find that the CO2 sorption is higher than the CH4 with a selectivity of 7.5 at 298 K for the gas mixture. We characterized the Gibbs dividing surface for each system, and the CO2 is confined for a long time at the gas-oligomer model interface. The simulated oligomer model showed performance above the 2008 Robeson's upper bound and may be a potential material for CO2/CH4 separation. Further computational and experimental studies are needed to evaluate the material.This Perspective reviews recent efforts toward selfconsistent calculations of ground-state energies within the random phase approximation (RPA) in the (generalized) Kohn-Sham (KS) density functional theory context. Since the RPA correlation energy explicitly depends on the non-interacting KS potential, an additional condition to determine the energy as a functional of the density is necessary. This observation leads to the concept of functional selfconsistency (FSC), which requires that the KS density equals the interacting density defined as the functional derivative of the ground-state energy with respect to the external potential. While all existing selfconsistent RPA schemes violate FSC, the recent generalized KS semicanonical projected RPA (GKS-spRPA) method takes a step toward satisfying it. This leads to systematic improvements in densities, binding energy curves, reference state stability, and molecular properties compared to non-selfconsistent RPA as well as optimized effective potential RPA. GKS-spRPA orbital energies accurately approximate valence and core ionization potentials, and even electron affinities of non-valence bound anions. The computational cost and performance of GKS-spRPA are compared to those of related selfconsistent schemes, including GW and orbital optimization methods, and limitations are discussed. Large differences between KS and interacting densities observed in the absence of FSC and the well-rounded performance of GKS-spRPA suggest that the KS potential as a density functional should be defined via the FSC condition for explicitly potential-dependent density functionals.An analysis of the structures, some energy related properties, and key aspects of the bonding nature of the microsolvated electron with four water molecules is presented. The study is based on an exhaustive potential energy surface scan of the ground state of (H2O)4 - at the UCCSD(T)/6-311(3+,4+)G(d,p)//UMP2/6-311(3+,4+)G(d,p) level. A total of 18 structures, most of them not reported before, spanning in an energy range of 8.8 kcal mol-1 were found. The energetic stability of the clusters is dictated by the effect of the excess electron on their structures, on their partial fragmentation, and on the hydrogen bonds' framework. Vertical detachment energies depend on the number of water molecules holding the excess electron in "direct contact" to their two protons at the same time and, to a lesser extent, also depend on the hydrogen bond sequence in the rest of the structure. In general, hydrogen bonds in (H2O)4 - are of closed shell character, and there are other less common interactions assisted by the excess electron.Understanding the permeation of biomolecules through cellular membranes is critical for many biotechnological applications, including targeted drug delivery, pathogen detection, and the development of new antibiotics. To this end, computer simulations are routinely used to probe the underlying mechanisms of membrane permeation. Despite great progress and continued development, permeation simulations of realistic systems (e.g., more complex drug molecules or biologics through heterogeneous membranes) remain extremely challenging if not intractable. In this work, we combine molecular dynamics simulations with transition-tempered metadynamics and techniques from the variational approach to conformational dynamics to study the permeation mechanism of a drug molecule, trimethoprim, through a multicomponent membrane. We show that collective variables (CVs) obtained from an unsupervised machine learning algorithm called time-structure based Independent Component Analysis (tICA) improve performance and substantially accelerate convergence of permeation potential of mean force (PMF) calculations. The addition of cholesterol to the lipid bilayer is shown to increase both the width and height of the free energy barrier due to a condensing effect (lower area per lipid) and increase bilayer thickness. Additionally, the tICA CVs reveal a subtle effect of cholesterol increasing the resistance to permeation in the lipid head group region, which is not observed when canonical CVs are used. We conclude that the use of tICA CVs can enable more efficient PMF calculations with additional insight into the permeation mechanism.
Here's my website: https://www.selleckchem.com/products/680c91.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team