Notes
![]() ![]() Notes - notes.io |
The patient was diagnosed as a case of CTEPH due to secondary APS. He underwent PEA and was discharged on lifelong anticoagulation. Clinical follow-ups thereafter showed improvement of functional capacity and pulmonary artery pressures. In conclusion, management of such cases was combination of standard treatment of CTEPH, in addition to specific management of secondary APS to avoid recurrence of the disease.Chronic thromboembolic pulmonary hypertension (CTEPH) is one of the leading causes of severe pulmonary hypertension (PH). The disease is still underdiagnosed, and the true prevalence is unknown. CTEPH is characterized by intraluminal non-resolving thrombus organization and fibrous stenosis, or complete obliteration of pulmonary arteries, promoted by progressive remodeling of the pulmonary vasculature. One consequence of this is an increase in pulmonary vascular resistance and pressure, resulting in PH and progressive right heart failure, leading to death if left untreated. Endovascular disobliteration by pulmonary endarterectomy (PEA) is the preferred treatment for CTEPH patients. PEA surgery is the only technique that can potentially cure CTEPH disease, especially in patients with fresh or organized thrombi of the proximal branches of pulmonary arteries. However, not all patients are eligible for PEA surgery. Recent research has provided evidence suggesting balloon pulmonary angioplasty (BPA) and targeted mecy and safety of targeted medical therapies in CTEPH patients are also discussed. As the treatment options for CTEPH improve, hybrid management involving multiple treatments in the same patient may become a viable option in the near future.This article reviews the scientific reasons that support the intriguing vision of pulmonary hypertension (PH) as a disease with a cancer-like nature and to understand whether this point of view may have fruitful consequences for the overall management of PH. This review compares cancer and PH in view of Hanahan and Weinberg's principles (i.e., hallmarks of cancer) with an emphasis on hyperproliferative, metabolic, and immune/inflammatory aspects of the disease. In addition, this review provides a perspective on the role of transcription factors and chromatin and epigenetic aberrations, besides genetics, as "common driving mechanisms" of PH hallmarks and the foreseeable use of transcription factor/epigenome targeting as multitarget approach against the hallmarks of PH. Thus, recognition of the widespread applicability and analogy of these concepts will increasingly affect the development of new means of PH treatment.Pulmonary arterial hypertension (PAH) is defined by a heterogenous pathobiology that corresponds to variable clinical presentation, treatment response, and prognosis across affected patients. The approach to pharmacotherapeutics in PAH has evolved since the introduction of the first prostacyclin replacement drug, which was trialed in patients with end-stage disease as a strategy by which to delay or prevent mortality. Subsequently, the aim of care in PAH has shifted toward minimizing symptoms, improving functional capacity, delaying disease progression, and prolonging life. Thus, treatments are now implemented earlier and according to the evidence base, which spans more than twenty years and includes patients at various stages of disease. Overall, the evidence supports multidrug therapy rather than monotherapy in the majority of PAH patients. Among incident patients, up-front combination therapy with ambrisentan and tadalafil or other comparable agents within these drug classes is recommended based on strong clinical trial data. In the near future, up-front triple therapy may be emerge as bona fide treatment approach in selected patients. Future goals that are already under consideration in PAH include stronger integration of pathobiological characteristics when considering the use of specific drugs, or the development of novel therapies, toward precision medicine-based clinical pharmacology.The range of cell types identified in the pathogenesis of pulmonary arterial hypertension (PAH) has expanded substantially since the first pathological descriptions of this disease. This, in turn, has provided needed clarity on the gamut of molecular mechanisms that regulate vascular remodeling and promote characteristic cardiopulmonary hemodynamic changes that define PAH clinically. Insight derived from these scientific advances suggest that the PAH arteriopathy is due to the convergence of numerous molecular mechanisms driving cornerstone endophenotypes, such as plexigenic, hypertrophic, and fibrotic histopathological changes. Interestingly, while some endophenotypes are observed commonly in multiple cell types, such as dysregulated metabolism, other events such as endothelial-mesenchymal transition are cell type-specific. SB290157 Integrating data from classical PAH vascular cell types with fresh information in pericytes, adventitial fibroblasts, and other PAH contributors recognized more recently has enriched the field with deeper understanding on the molecular basis of this disease. This added complexity, however, also serves as the basis for utilizing novel analytical strategies that emphasize functional signaling pathways when extracting information from big datasets. With these concepts as the backdrop, the current work offers a concise summary of cellular and molecular changes in the lung that drive PAH and may, thus, be important for discovering novel therapeutic targets or applications to clarify PAH onset and disease trajectory.The epidemiology of pulmonary vascular disease (PVD) remains unclear in Africa, where health systems do not reach the majority of the population and heath information systems are poorly developed. In this context, registries are particularly important in gathering crucial information on PVD, aiming at improving knowledge of the epidemiology and/or quality of care. While population-based registries are the main tool to identify incident cases, and be a better indicator of pulmonary vascular disease burden, hospital-based registries can give an indication of the demand for specific care services, which is useful for health policy and planning. The only registry for pulmonary hypertension in Africa - the Pan African Pulmonary Hypertension Cohort (PAPUCO) - involved four countries, and was a pragmatic study that revealed a unique pattern of environmental risks, issues related to low access to health care, and ill-equipped health facilities for diagnosis and management of pulmonary hypertension. In addition, disease specific registries for conditions such as congenital heart disease and rheumatic heart disease uncovered high occurrence of PVD that can be managed and/or prevented with improvements in community awareness, surveillance, management and prevention.
Here's my website: https://www.selleckchem.com/products/sb290157-tfa.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team