NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

We propose a novel technique of integrating silica nanowires to carbon microelectrode arrays on silicon substrates
The silica nanowires were grown on photoresist-derived three-dimensional carbon microelectrode arrays during carbonization of patterned photoresist in a tube furnace at 1000 °C under a initially as a thin layer on the structure surface. Carbonization-assisted nucleation and growth are proposed to extend the Cu-catalyzed vapor-liquid-solid mechanism for the nanowire integration behaviour. The growth of silica nanowires exploits Si from the etched silicon substrate under the Cu particles. It is found that the thickness of the initial Cu coating layer plays an important role as catalyst on the morphology and on the amount of grown silica nanowires. These nanowires have lengths of up to 100 µm and diameters ranging from 50 to 200 nm, with 30 nm Cu film sputtered initially. The study also reveals that the nanowire-integrated microelectrodes significantly enhance the electrochemical performance compared to blank ones.

A specific capacitance increase of over 13 times is demonstrated in the electrochemical experiment. The platform can be used to develop large-scale miniaturized devices and systems with increased efficiency for applications in electrochemical, biological and energy-related Accurate near-field lithography modeling and quantitative mapping of the near-field distribution of a plasmonic nanoaperture in a metal.University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Korea.In nanolithography using optical near-field sources to push the critical dimension below the diffraction limit, optimization of process parameters is of utmost importance. Herein we present a simple analytic model to predict photoresist profiles with a localized evanescent exposure that decays exponentially in a photoresist of finite contrast. We introduce the concept of nominal developing thickness (NDT) to determine the proper developing process that yields the best topography of the exposure profile fitting to the isointensity contour. Based on this model, we experimentally investigated the NDT and obtained exposure profiles produced by the near-field distribution of a bowtie-shaped nanoaperture.

The profiles were properly fit to the calculated results obtained by the finite differential time domain method. Using the threshold exposure dose of a photoresist, we can determine the absolute intensity of the intensity distribution of the near field and analyze the difference in decay rates of the near field distributions obtained via experiment and calculation. For Synthesis of 6-butyl-n-hydroxynaphthimide trifluoromethanesulfonic acid and its Variants of 41 nm, we estimate the uncertainties in the measurements of profile and intensity to be less than 6% and about 1%, respectively. 6-butyl-n-hydroxynaphthimide trifluoromethanesulfonic acid as a Precursor for Naphthalimide Derivatives expect this method will be useful in detecting the absolute value of the near-field distribution produced by nano-scale Interplay of Hückel and Möbius Aromaticity in Metal-Metal Quintuple Bonded Complexes of Cr, Mo, and W with Amidinate Ligand: Ab initio DFT and Computational Quantum Chemistry, The Hebrew University, Jerusalem, 91904, The aromaticity of metal-metal quintuple bonded complexes of the type M2 L2 (M=Cr, Mo, and W; L=amidinate) are studied employing gauge including magnetically induced ring current (GIMIC) analysis and electron density of delocalized bonds (EDDB). It is found that the complexes possess two types of aromaticity: i) Hückel aromaticity through delocalization of ligand π electrons with metal-metal δ-bond-forming 6 conjugated electrons (4π and 2δ) ring; ii) Craig-Möbius aromaticity through delocalization of π electrons of both the ligands with metal d-orbitals in Craig type orientation forming 10π electrons ring with a double twist. Extended transition state natural orbital chemical valence (ETS-NOCV) and canonical molecular orbital natural chemical shielding (CMO-NCS) analysis confirm the Craig-Möbius type arrangement of the orbitals. Furthermore, the unprecedented Hückel and Möbius type aromaticity is confirmed from the plot of the current pathways using 3D line integral convolution (3D-LIC) plots.

The metal-metal bond order also increases down the group as justified from the complete active space self-consistent field (CASSCF) analysis. Due to an increase in the π and δ electron conjugation, both the Hückel and Möbius aromaticity increase down the group.Prediction of ozone-induced lung function responses in humans.The main purpose of this study was to evaluate the ability of a human exposure-response model, which describes ozone-induced changes in forced expiratory volume in 1 second (FEV1) across a wide range of dynamic exposure conditions, to predict responses in independent data. We first conducted an n-fold cross-validation of the model using samples of the original EPA data from which the model was developed. We then identified seven more recently published studies with controlled exposures to a wide range of ozone exposure patterns relevant to the current ambient ozone health standard and used the model to calculate the mean predicted responses for the exposure conditions of the individual studies that we compared to the mean observed responses reported in these studies. The n-fold cross-validation indicated good internal agreement between mean predicted and mean observed responses in the original data used to develop the model.
Website: http://en.wikipedia.org/wiki/Photoacid
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.