NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Components projecting decrease of cervical lordosis pursuing cervical laminoplasty: A vital evaluate.
This paper presents the impact on antimicrobial resistance (AMR) in poultry and pig bacteria of the French EcoAntibio plan, a public policy to reduce antimicrobial use in animals. The analysis was performed using sales data of veterinary antimicrobials and AMR data from bacteria obtained at slaughterhouse and from diseased animals. From 2011-2018, fluoroquinolones exposure decreased by 71.5 % for poultry and 89.7 % for pigs. For Campylobacter jejuni isolated from broilers at slaughterhouses, ciprofloxacin resistance increased from 51 % in 2010 to 63 % in 2018, whereas for turkeys the percentages varied from 56 % in 2014 to 63 % in 2018. For commensal E. coli isolated from the caecal content of broilers at slaughterhouses, the resistance to ciprofloxacin - assessed using an epidemiological cut-off value - increased in broiler isolates from 30.7 % in 2010 to 38.1 % in 2018. In turkeys, the percentage of resistant E. coli isolates decreased from 21.3 % in 2014 to 15.2 % in 2018, whereas in pigs, it increased from 1.9 % in 2009 to 5.5 % in 2017. However, for E. coli isolated from diseased animals, when the breakpoints of 2018 were applied, resistance to fluoroquinolones significantly decreased between 2010 and 2018 from 9.0%-5.4% for broilers/hens, from 7.4 % to 3.4 % for turkeys and from 9.4 % to 3.6 % for pigs. These data show that the major, rapid decrease in the exposition to fluoroquinolones had contrasting effects on resistance in the diverse bacterial collections. Co-selection or fitness of resistant strains may explain why changes in AMR do not always closely mirror changes in use. Several duck Tembusu virus (DTMUV) clusters have been identified since its first emergence in 2010. However, the pathogenesis evaluation of DTMUV has been restricted to cluster 2.2 Chinese DTMUVs. In this study, the pathogenesis of a cluster 2.1 Thai DTMUV was investigated in three ages of Cherry Valley ducks (1-, 4- and 27-week-old). In each age, 35 ducks were inoculated with a cluster 2.1 Thai DTMUV and evaluated for clinical signs, virus distribution and shedding, pathology and serological response. Our results demonstrated that all duck ages were susceptible to Thai DTMUV; however, Thai DTMUV induced greater disease severity in younger ducks (1- and 4-week-old) when compared to older ducks (27-week-old) reflected by higher morbidity and mortality rates, and higher degree of pathological severity. Corresponding to these results, longer-term viremia, higher levels of viral loads in tissues and lower neutralizing antibody titers were also observed in younger ducks compared to those in older ducks. However, it should be noted that a significant drop in egg production was found in older ducks, which also indicates the susceptibility to Thai DTMUV in older ducks. Interestingly, prolonged shedding period with high viral loads was observed in older ducks even without showing clinical signs, suggesting the potential role of the older ducks as the carriers of Thai DTMUV. This finding highlights the importance of monitoring DTMUV and preventing the transmission of DTMUV in adult ducks. Overall, this study provides insights into the pathogenesis and infection dynamics of a cluster 2.1 Thai DTMUV in ducks. Infectious laryngotracheitis virus (ILTV) is an economically significant respiratory pathogen of poultry. Novel recombinant strains of ILTV have emerged in Australia during the last decade and currently class 9 (CL9) and class 10 (CL10) ILTV are the most prevalent circulating strains. This study conducted a comprehensive investigation of the pathogenesis of these two viral strains. Commercial broiler and specific pathogen free (SPF) chickens were inoculated with varying doses of CL9 or CL10 ILTV and subsequently evaluated for clinical and pathological signs of infection. While no difference in the levels of acute viral replication were observed across the different challenge doses, the severity of clinical signs, tracheal pathology and mortality were dose dependent. Both strains of virus persisted in the respiratory tract for up to 14 days post inoculation (dpi) and could be detected in the lung and feathers with sporadic detection in the liver, spleen or bursa. Given the prevalence of CL9 and CL10 in Australian poultry flocks, this study provides an important foundation for the development of diagnostic and therapeutic approaches for the detection and prevention of ILTV. Actinobacillus pleuropneumoniae is the causative agent of highly contagious and fatal respiratory infections, causing substantial economic losses to the global pig industry. Due to increased antibiotic resistance, there is an urgent need to find new antibiotic alternatives for treating A. pleuropneumoniae infections. MPX is obtained from wasp venom and has a killing effect on various bacteria. This study found that MPX had a good killing effect on A. pleuropneumoniae and that the minimum inhibitory concentration (MIC) was 16 μg/mL. The bacterial density of A. pleuropneumoniae decreased 1000 times after MPX (1 × MIC) treatment for 1 h, and the antibacterial activity was not affected by pH or temperature. Fluorescence microscopy showed that MPX (1 × MIC) destroyed the bacterial cell membrane after treatment for 0.5 h, increasing membrane permeability and releasing bacterial proteins and Ca2+, Na+ and other cations. In addition, MPX (1 × MIC) treatment significantly reduced the formation of bacterial biofilms. Quantitative RT-PCR results showed that MPX treatment significantly upregulated the expression of the PurC virulence gene and downregulated that of ApxI, ApxII, and Apa1. In addition, the Sap A gene was found to play an important role in the tolerance of A. pleuropneumoniae to antimicrobial peptides. Therapeutic evaluation in a murine model showed that MPX protects mice from a lethal dose of A. pleuropneumoniae and relieves lung inflammation. This study reports the use of MPX to treat A. pleuropneumonia infections, laying the foundation for the development of new drugs for bacterial infections. Salmonella Enteritidis (SE) is one of the most common culprits of foodborne disease in humans due to its horizontal transmission from infected animals to humans. The development of a safe vaccine against Salmonella would be important for both farm animals and humans concerning disease containment. The SE ghosts carrying FliC were genetically constructed using a special ghost plasmid pJHL184 that co-expressed FliC and the phage lysis gene E. These SE ghosts were characterized by ghost generation efficacy by increasing the culture temperature to "42 °C" in the absence of L-arabinose. This temperature change led to an ghost generation with almost complete lysis of the SE host strain in 48 hs. The expression of FliC was confirmed by Western blot analysis. Also, indirect ELISA was used to prove FliC specific antibody generation in immunized mice. The parenteral adjuvant effect of the FliC antigen was demonstrated by immunizing mice with pJHL184flC, pJHL184 alone, or PBS alone. The mice were intramuscularly immunizrevent salmonellosis. They also suggest that the surface expression of flagellin (FliC) significantly enhances antigen-specific humoral and cell-mediated immune responses. This FliC expression can also enhance the protective efficacy of the bacterial ghosts-based vaccine against virulent challenge. Zinc treatment is beneficial for infectious diarrhea or colitis. This study aims to characterize the pathomechanisms of the epithelial barrier dysfunction caused by alpha-hemolysin (HlyA)-expressing Escherichia coli in the colon mucosa and the mitigating effects of zinc ions. We performed Ussing chamber experiments on porcine colon epithelium and infected the tissues with HlyA-producing E. coli. Colon mucosa from piglets was obtained from a feeding trial with defined normal or high dose zinc feeding (pre-conditioning). Additional to the zinc feeding, zinc was added to the luminal compartment of the Ussing chamber. Transepithelial electrical resistance (TER) was measured during the infection of the living tissue and subsequently the tissues were immuno-stained for confocal microscopy. Zinc applied to the luminal compartment was effective in preventing from E. coli-induced epithelial barrier dysfunction in Ussing chamber experiments. In contrast, zinc pre-conditioning of colon mucosae when zinc ions were missing subsequently in the luminal compartment was not sufficient to prevent epithelial barrier impairment during E. coli infection. The pathological changes caused by E. coli HlyA were alterations of tight junction proteins claudin-4 and claudin-5, focal leak formation, and cell exfoliation which reflected the paracellular barrier defect measured by a reduced TER. In microscopic analysis of luminal zinc-treated mucosae these changes were absent. In conclusion, continuous presence of unbound zinc ions in the luminal compartment is essential for the protective action of zinc against E. coli HlyA. This suggests the usage of zinc as therapeutic regimen, while prophylactic intervention by high dietary zinc loads may be less useful. This work aimed at characterizing four Staphylococcus aureus and 68 coagulase-negative staphylococci (CoNS), recovered from the air and liquid manure tank of two swine farms with intensive- and semi-extensive-production types, for their antimicrobial resistance pheno-/genotypes and their virulence gene content. Molecular typing was performed by spa typing, MLST, agr typing, and SCCmec typing, where applicable. Conjugation experiments were performed to assess the transferability of the linezolid resistance gene cfr, and its genetic environment was determined by Whole-Genome-Sequencing. The four S. aureus (intensive-production farm, IP-farm) were typed as t011-agrI-CC398-ST398, were scn-negative and two of them were methicillin-resistant (MRSA) with the mecA gene (SCCmec-V). Multidrug resistance was seen in 87 % of the CoNS. Statistically significant differences among the antimicrobial resistance rates of CoNS from the two farms were observed for cefoxitin, aminoglycosides, tetracycline, ciprofloxacin and trimethoprim-sulfamethoxazole. Eight methicillin-resistant CoNS, which were recovered from the IP-farm, carried the mecA gene. One S. simulans isolate was PVL-positive and three S. cohnii eta-positive. One S. equorum and one S. arlettae showed linezolid resistance and carried the cfr gene (IP-farm), which was non-transferable by conjugation into S. aureus. The cfr genetic context in both isolates was identical, with the lsa(B) gene located upstream of cfr. The environment of swine farms might contribute to the dissemination of CoNS that show multidrug resistance and harbor important virulence factors. Mycoplasma bovis, a cattle pathogen of major economic importance across the globe, causes a range of diseases, including pneumonia and mastitis. Because of the limited options for effective treatment of these diseases, prevention and control are preferred to diagnosis and treatment. In this study, the efficacies of citric acid and sodium hypochlorite as disinfectants against M. bovis were tested using a modification of a standardised method for assessing the efficacy of disinfectants against bacteria. A citric acid concentration of 0.5 % was found to be an effective disinfectant, reducing infectivity by close to 106 fold, while sodium hypochlorite at 1% was found to have similar efficacy to 0.5 % citric acid. A 0.04 % concentration of sodium hypochlorite was effective against M. bovis only in the absence of any organic material. Under these conditions, 0.25 % citric acid found to have similar efficacy. These findings indicate that 0.5 % citric acid or 1 % sodium hypochlorite are likely to be effective disinfectants for M.
Read More:
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.