NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Although the mechanism of the amplifying effect of nitrosoureas has not been elucidated, our study shows a possible risk in the use of these drugs for inductive or adjuvant chemotherapy
Sonodynamic therapy is a potential cancer treatment modality that has been gaining support due to its effectiveness in both in vitro and in vivo studies. The therapeutic method combines ultrasonic irradiation with drugs known as sonosensitizers that amplify its ability to inflict preferential damage on malignant cells. This is based on the idea that ultrasonic waves have the ability to exhibit profound physical and chemical changes on cellular structure. The mechanisms by which ultrasound (US) disrupts cellular functioning can be further amplified when sonosensitizers are applied. Combining multiple sonosensitizers with US to create a substantial synergistic effect could be an effective method for destroying tumorigenic growths, while decreasing the A Fluorescence-Based, T5 Exonuclease-Amplified DNA Cleavage Assay for Discovering Bacterial DNA Gyrase Poisons.Fluoroquinolones (FQs) are potent antibiotics of clinical significance, known for their unique mechanism of action as gyrase poisons, which stabilize gyrase-DNA cleavage complexes and convert gyrase into a DNA-damaging machinery.

Unfortunately, FQ resistance has emerged, and these antibiotics can cause severe side effects. Therefore, discovering novel gyrase poisons with different chemical scaffolds is essential. The challenge lies in efficiently identifying them from compound libraries containing thousands or millions of drug-like compounds, as high-throughput screening (HTS) assays are currently unavailable. Here we report a novel fluorescence-based, T5 exonuclease-amplified DNA cleavage assay for gyrase poison discovery. This assay capitalizes on recent findings showing that multiple gyrase molecules can simultaneously bind to a plasmid DNA molecule, forming multiple gyrase-DNA cleavage complexes on the same plasmid. These gyrase-DNA cleavage complexes, stabilized by a gyrase poison, can be captured using sarkosyl. Proteinase K digestion results in producing small DNA fragments.

T5 exonuclease, selectively digesting linear and nicked DNA, can fully digest the fragmented linear DNA molecules and, thus, "amplify" the decrease in fluorescence signal of the DNA cleavage products after SYBR Green staining. This fluorescence-based, T5 exonuclease-amplified DNA cleavage HTS assay is validated using a 50-compound library, making it suitable for screening Metallic resist for phase-change lithography.and Electronic Information, Huazhong University of Science and Technology, LuoYu and Electronic Information, Huazhong University of Science and Technology, LuoYu Currently, the most widely used photoresists in optical lithography are organic-based resists. The major limitations of such resists include the photon accumulation severely affects the quality of photolithography patterns and the size of the pattern is constrained by the diffraction limit. Phase-change lithography, which uses semiconductor-based resists such as chalcogenide Ge₂Sb₂Te₅ films, was developed to overcome these limitations. Here, instead of chalcogenide, we propose a metallic resist composed of Mg₅₈Cu₂₉Y₁₃ alloy films, which exhibits a considerable difference in etching rate between amorphous and crystalline states. Furthermore, the heat distribution in Mg₅₈Cu₂₉Y₁₃ thin film is better and can be more easily controlled than that in Ge₂Sb₂Te₅ during exposure.

We succeeded in fabricating both continuous and discrete patterns on Mg₅₈Cu₂₉Y₁₃ thin films via laser irradiation and wet etching. Our results demonstrate that a metallic resist of Mg₅₈Cu₂₉Y₁₃ is suitable for phase change lithography, and this type of resist has potential due to its outstanding Spectroscopic Diagnosis of Excited-State Aromaticity: Capturing Electronic Structures and Conformations upon Aromaticity Reversal.Chemistry , Yonsei University , Seoul 120-749 , Korea.Aromaticity, the special energetic stability derived from cyclic [4 n + 2]π-conjugated electronic structures, has been the topic of intense interest in chemistry because it plays a critical role in rationalizing molecular stability, reactivity, and physical/chemical properties. Recently, the pioneering work by Colin Baird on aromaticity reversal, postulating that aromatic (antiaromatic) character in the ground state reverses to antiaromatic (aromatic) character in the lowest excited triplet state, has attracted much scientific attention. The completely reversed aromaticity in the excited state provides direct insight into understanding the photophysical/chemical properties of photoactive materials. In turn, the application of aromatic molecules to photoactive materials has led to numerous studies revealing this aromaticity reversal.

However, most studies of excited-state aromaticity have been based on the theoretical point of view. Organic Synthesis of 6-butyl-n-hydroxynaphthimide trifluoromethanesulfonic acid of aromaticity in the excited state is still challenging and strenuous because the assessment of (anti)aromaticity with conventional magnetic, energetic, and geometric indices is difficult in the excited state, which practically restricts the extension and application of the concept of excited-state aromaticity.
Here's my website: https://www.easyfie.com/outputdream8
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.