NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Analysis Time Bladder Models Ideas Mechanism Prevention Biofilm Infection Biomaterials
Due to the limitations of the included studies, more high-quality studies are needed to verify the conclusions above further. MK615: a new therapeutic approach for the treatment of oral disease. The oral cavity is inhabited by over 500 different bacterial species. Dental caries and periodontitis are major bacterial infectious diseases in the oral as Ume in Japanese, has been a traditional Japanese medicine for centuries, and is a familiar and commonly consumed food. The health benefits of Ume are now being widely recognized. Recent studies showed that MK615, an extract of compounds from Ume, has strong anticancer and anti-inflammatory effects.

However, the potential role of MK615 in the antimicrobial field remains unknown. Therefore, we hypothesize that MK615 has antimicrobial activities against a range of oral bacterial pathogens. Here, we show that MK615 may be a potent inhibitor of the growth of some oral bacteria and an inhibitor of biofilm formation by Streptococcus mutans, the principal etiological agent of human dental caries. Our findings suggest that MK615 has potential as a therapeutic agent for treating and preventing oral diseases such as dental caries and Physiology and genetic traits of reverse osmosis membrane biofilms: a case study Biofilm formation of Pseudomonas aeruginosa on the surface of a reverse osmosis conditions relevant to reclamation of secondary wastewater effluent. P. aeruginosa biofilm physiology and spatial activity were analyzed following growth on the membrane using a short-life green fluorescent protein derivative expressed in a growth-dependent manner. As a consequence of the limiting carbon source prevailing in the suspended culture of the RO unit, a higher distribution of active cells was observed in the biofilm close to the membrane surface, likely due to the higher nutrient levels induced by concentration polarization effects.

The faster growth of the RO-sessile cells compared to the planktonic cells in the RO unit was reflected by the transcriptome of the two cultures analyzed with DNA microarrays. In Bacterial biofilm formation to the findings recently reported in related to stress, adaptation, chemotaxis and resistance to antibacterial agents were induced in the planktonic cells. In agreement with the findings of previous P. aeruginosa biofilm studies, motility- and attachment-related genes were increase in both motility and chemotaxis phenotypes was observed in the suspended cells. The increase in nutrient concentration in close proximity to the membrane is suggested to enhance biofouling by chemotaxis response of the suspended cells and their swimming toward the membrane surface. Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms. To cause an infection, bacteriophages must penetrate the alginate exopolysaccharide of Pseudomonas aeruginosa to reach the bacterial surface.

Despite a lack of intrinsic motility, phage were shown to diffuse through alginate gels at alginate concentrations up to 8% (wt/vol) and to bring about a 2-log reduction in the cell numbers in 20-day-old biofilms of P. aeruginosa. The inability of alginate to act as a more effective diffusional barrier suggests that phage may cause a reduction in the viscosity of the exopolysaccharide. Samples (n = 5) of commercial alginate and purified cystic fibrosis (CF) alginate were incubated with 2 x 10(8) purified phage per ml for 24 h at 37 degrees C. After incubation the samples and controls were subjected to rheological analysis with a Carrimed controlled stress rheometer. The viscosities of phage-treated samples were reduced by up to 40% compared to those of controls incubated in the absence of phage. The experiment was repeated by using phage concentrations of 10(10) and 10(12) phage per ml and samples taken for analysis at intervals up to 4 h.

The results indicated that there was a time- and concentration-dependent reduction in viscosity of up to 40% compared to the viscosities of the controls. Colanic acid and purified CF alginate samples, both phage treated and untreated, were subjected to gel filtration chromatography by using Sephacryl High Resolution S-400 medium in order to obtain evidence of degradation. The results demonstrated that alginate treated with phage had a lower molecular weight than untreated alginate. The data suggest that bacteriophage migration through P. aeruginosa biofilms may be facilitated by a reduction in alginate viscosity brought about by enzymic degradation and that the source of the enzyme may be the bacterial host itself.
My Website: http://www.allinno.com/product/food/684.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.