Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Human oral cancer is the single largest group of malignancies in the Indian subcontinent and the sixth largest group of malignancies worldwide. Squamous cell carcinomas (SCC) are the most common epithelial malignancy of the oral cavity, constituting over 90% of oral cancers. About 90% of OSCCs arise from pre-existing, potentially malignant lesions. According to WHO, OSCC has a 5-year survival rate of 45-60%. Late diagnosis, recurrence, and regional or lymph nodal metastases could be the main causes of the high mortality rates. Biomarkers may help categorize and predict premalignant lesions as high risk of developing malignancy, local recurrence, and lymph nodal metastasis. However, at present, there is a dearth of such markers, and this is an area of ongoing research. Keratins (K) or cytokeratins are a group of intermediate filament proteins that show paired and differentiation dependent expression. Our laboratory and others have shown consistent alterations in the expression patterns of keratins in both oral precancerous lesions and tumors. The correlation of these changes with clinicopathological parameters has also been demonstrated. Furthermore, the functional significance of aberrant keratins 8/18 expression in the malignant transformation and progression of oral tumors has also been documented. This article reviews the literature that emphasizes the value of keratins as biomarkers for the prognostication of human oral precancers and cancers.Breast cancer has the highest cancer incidence rate in women. Early screening of breast cancer can effectively improve the treatment effect of patients. However, the main diagnostic techniques available for the detection of breast cancer require the corresponding equipment, professional practitioners, and expert analysis, and the detection cost is high. Tumor markers are a kind of active substance that can indicate the existence and growth of the tumor. The detection of tumor markers can effectively assist the diagnosis and treatment of breast cancer. The conventional detection methods of tumor markers have some shortcomings, such as insufficient sensitivity, expensive equipment, and complicated operations. Compared with these methods, biosensors have the advantages of high sensitivity, simple operation, low equipment cost, and can quantitatively detect all kinds of tumor markers. This review summarizes the biosensors (2013-2021) for the detection of breast cancer biomarkers. Firstly, the various reported tumor markers of breast cancer are introduced. Then, the development of biosensors designed for the sensitive, stable, and selective recognition of breast cancer biomarkers was systematically discussed, with special attention to the main clinical biomarkers, such as human epidermal growth factor receptor-2 (HER2) and estrogen receptor (ER). Finally, the opportunities and challenges of developing efficient biosensors in breast cancer diagnosis and treatment are discussed.Staphylococcus epidermidis is more abundant in the anterior nares than internal parts of the nose, but its relative abundance changes along with age; it is more abundant in adolescents than in children and adults. Various studies have shown that S. epidermidis is the guardian of the nasal cavity because it prevents the colonization and infection of respiratory pathogens (bacteria and viruses) through the secretion of antimicrobial molecules and inhibitors of biofilm formation, occupying the space of the membrane mucosa and through the stimulation of the host's innate and adaptive immunity. There is a strong relationship between the low number of S. epidermidis in the nasal cavity and the increased risk of serious respiratory infections. The direct application of S. epidermidis into the nasal cavity could be an effective therapeutic strategy to prevent respiratory infections and to restore nasal cavity homeostasis. This review shows the mechanisms that S. epidermidis uses to eliminate respiratory pathogens from the nasal cavity, also S. epidermidis is proposed to be used as a probiotic to prevent the development of COVID-19 because S. epidermidis induces the production of interferon type I and III and decreases the expression of the entry receptors of SARS-CoV-2 (ACE2 and TMPRSS2) in the nasal epithelial cells.Acute low back pain can be experimentally induced by injections of hypertonic saline into deep tissues of the back, such as fascia and muscle. The current study investigated the dose-dependency of peak-pain and spatial extent of concomitant radiating pain following 50, 200 and 800 μL bolus injections of hypertonic saline (5.8%) into the thoracolumbar fascia and multifidus muscle, since data on dose-dependency is lacking in humans. Sixteen healthy subjects rated (11 female, 5 male; 23.3 ± 3.1 years, mean ± SD) intensity and spatial extent of pain. Injections into the fascia resulted in significantly higher peak-pain (+86%, p < 0.001), longer pain durations (p < 0.05), and larger pain areas (+65%, p < 0.02) and were less variable than intramuscular injections. Peak-pain ratings and pain areas were 2-3-fold higher/larger for 200 μL vs. 50 μL. In contrast, peak pain increased only marginally at 800 μL by additional 20%, while pain areas did not increase further at all in both, fascia and muscle. Thus, higher injection volumes did also not compensate the lower sensitivity of muscle. Peak-pain ratings and pain areas correlated between fascia and muscle (r = 0.530, p < 0.001 and r = 0.337, p < 0.02, respectively). Peak-pain ratings and pain areas correlated overall (r = 0.490, p < 0.0001), but a weak correlation remained when the impact of between-tissue differences and different injection volumes were singled out (partial r = 0.261, p < 0.01). This study shows dose-dependent pain responses of deep tissues where an injection volume of 200 μL of hypertonic saline is deemed an adequate stimulus for tissue differentiation. We suggest that pain radiation is not simply an effect of increased peripheral input but may afford an individual disposition for the pain radiation response. Substantially higher pain-sensitivity and wider pain areas support fascia as an important contributor to non-specific low back pain.Leafy vegetables cultivated in kitchen gardens and suburban areas often accumulate excessive amounts of heavy metals and pose a threat to human health. For this reason, plenty of studies have focused on low accumulation variety screening. However, identifying specific leafy vegetable varieties according to the foliar uptake of air pollution remains to be explored (despite foliar uptake being an important pathway for heavy-metal accumulation). Therefore, in this study, the lead (Pb) and cadmium (Cd) contents, leaf morphology, and particle matter contents were analyzed in a micro-area experiment using 20 common vegetables. The results show that the Pb content in leaves ranged from 0.70 to 3.86 mg kg-1, and the Cd content ranged from 0.21 to 0.99 mg kg-1. Atmospheric particles were clearly scattered on the leaf surface, and the particles were smaller than the stomata. Considering the Pb and Cd contents in the leaves and roots, stomata width-to-length ratio, leaf area size, enrichment factor, and translocation factor, Yidianhongxiancai, Qingxiancai, Baiyuanyexiancai, Nanjingjiangengbai and Sijixiaobaicai were recommended for planting in kitchen gardens and suburban areas as they have low accumulation characteristics. Identifying the influencing factors in the accumulation of heavy metals in vegetables through foliar uptake is important to help plant physiologists/environmentalists/policy makers to select suitable varieties for planting in air-polluted areas and thus reduce their threat to human health.Chromium (Cr) is a toxic heavy metal whose high concentration in soil badly affects plant growth, photosynthesis, and overall yield. Metal-derived nano-particles and metal-resistant bacteria can strengthen the plant defense system against different abiotic stresses; however, little is known about the use of nanoparticles in conjunction with bacteria. EUK 134 chemical structure This study examined the combined effect of Fe nanoparticles (Fe NPs) and a chromium-resistant bacterium Staphylococcus aureus, on rice plants grown on chromium saturated medium. Chromium stress reduced rice growth, biomass, and chlorophyll contents by causing oxidative damage leading to overproduction of electrolyte leakage, hydrogen peroxide, and malondialdehyde. Fe NPs significantly improved plant growth, biomass, yield, and photosynthetic activity by enhancing the chlorophyll contents and alleviating oxidative damage. Application of Fe NPs also reduced the uptake and accumulation of Cr in the plants by increasing the bioavailability of micronutrients to the plant. The Fe NPs decreased oxidative damage and enhanced the enzymatic and non-enzymatic activity in the plant to withstand Cr stress compared to the plants without Fe NPs treatments. The inoculation of rice plants with the chromium-resistant bacteria S. aureus further enhanced the positive impact of Fe NPs by transforming the toxic form of chromium (Cr6+) into a less toxic form of chromium (Cr3+). The bacterial inoculation reduced Cr uptake by plants through adsorption of Cr ions, resulting in decreased chromium ion bioavailability. At chromium level 100 mg/kg, the foliar application of Fe NPs from 0 to 20 mg/L increased the total chlorophyll contents from 2.8 to 3.9. The application of S. aureus further enhanced the chlorophyll contents from 4.4 to 5.4, respectively. The current study suggested that combining Fe NPs and S. aureus could be a viable strategy for reducing Cr toxicity and accumulation in rice plants and most likely other plants.The most common type of skin cancer is melanoma. While significant advances in chemotherapy have occurred in a few instances, only marginal progress has been made in treating metastatic melanoma. Natural medicine has traditionally been used to treat various illnesses, including cancer. The purpose of this study was to identify the active compound in Kaempferia galanga, which could be used to treat melanoma as an anti-metastasis and chemosensitizer agent. The active compound in K. galanga was isolated and identified using chromatography and spectroscopy techniques, and given six compounds. Inhibitory activity on NFκB activation and cell viability was determined using reporter assay methods. Among the isolated compounds, ethyl p-methoxycinnamate (EPMC) demonstrated potent NFκB inhibitory activity against melanoma cell B16F10- NFκB Luc2 with an IC50 of 88.7 μM. Further investigation was conducted by evaluating the anti-metastasis effect of EPMC in vitro by using wound-healing assays, invasion tests, and molecular mechanism assays using Western blotting. NFκB has been implicated in tumorigenesis through the PI3K/Akt/NFκB pathway. The results of this study indicated that EPMCs act as inhibitors of p38 and thereby Akt phosphorylation inhibitors at serine 473, inhibiting NFκB-dependent transcription. Further analysis with paclitaxel demonstrated that the combinations could sensitize to apoptosis in response to well-known chemotherapy agents. Additional studies were conducted using the human melanoma cancer cell line SK-Mel 28. Along with the induction of apoptosis, we observed an increase in p-γH2AX expression (a molecular marker for double strand breaks in DNA damage) in response to treatment with paclitaxel and EPMC. The result showed EPMC to be a potential, viable adjuvant for improving the clinical efficacy of anti-metastatic and cancer chemotherapy.
Here's my website: https://www.selleckchem.com/products/euk-134.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team