Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
To analyze the correlation between connexin 43 (Cx43) and the expression of P16 and P21, aging-related proteins, and to investigate the possible role of Cx43 in the development of cell senescence with an aging model prepared by D-galactose (D-gal) intervention in the vascular smooth muscle cells (VSMCs) of guinea pig spiral modiolar artery (SMA).
The VSMCs of guinea pig SMA were cultured with the adhesion method, and the markers of VSMCs were detected with immunofluorescence technique. The experiment has a control group, a D-gal group, and a group that received D-gal and gap junction agonist AAP10 intervention, hereafter referred to as the AAP10 group. Cell Counting Kit-8 (CCK-8) was used to check VSMC activity and to determine the concentration and duration of D-gal intervention. The mRNA expression of Cx43 in each group was checked with qRT-PCR. The expression of Cx43, P16 and P21 proteins in each group was examined with the Western blot. The expression and distribution of P16 and P21 proteins were examt P16 and P21 were mainly expressed in the cell nucleus. Semi-quantitative analysis of fluorescence intensity showed that the level of P16 and P21 protein in the D-gal group was significantly higher than that in the control group, and the fluorescence intensity of AAP10 group was significantly lower than that in the D-gal group (
<0.01).
Up-regulation of Cx43 expression can reverse the D-gal-induced abnormal expression of P16 and P21, two aging-related proteins, in SMA. It is suggested that Cx43 on SMA may be involved in D-gal-induced cell senescence, which provides a theoretical basis and possible intervention target for the delay of cell senescence.
Up-regulation of Cx43 expression can reverse the D-gal-induced abnormal expression of P16 and P21, two aging-related proteins, in SMA. It is suggested that Cx43 on SMA may be involved in D-gal-induced cell senescence, which provides a theoretical basis and possible intervention target for the delay of cell senescence.According to Healthy China, a national strategy of the Government of China, new requirements were put forward for high-quality medical education, high-level surgical research, and precise clinical diagnosis and treatment. In the context of Emerging Medical Discipline, a strategic blueprint of medical education in China, this paper reviews the concept and core value of virtual reality (VR) and its significant role in the medical industry. On that basis, we explore the role of VR technology in medical training against the background of Emerging Medicine Discipline. Furthermore, typical cases are presented to help analyze and illustrate in detail the important role of VR technology in the teaching and training of stomatological and clinical procedures, skills assessment, online self-directed training, and clinical thinking skills training. We herein summarize useful information from past experience so as to help build innovative models of medical education in the context of Emerging Medical Discipline.Cellular senescence is a permanent state of cell cycle arrest, combined with the acquisition of a variety of secretory phenotypes. In addition to apoptosis, the induction of cellular senescence is an important mechanism that chemo- and radiotherapies and some targeted therapies rely on to produce an anti-tumor effect. However, being a self-protective mechanism of cells, cellular senescence can produce both positive and negative effects in tumor treatment. It remains a challenge to effectively utilize the anti-tumor effect of cellular senescence while averting the pro-tumor effect. How to improve the sensitivity of tumor treatment and to prevent tumor recurrence and metastasis has become the bottleneck in cellular senescence research. We summarize in this review the "double-edged-sword" effect of cellular senescence in tumor treatment. We summarize and discuss the cell autonomous and non-autonomous mechanisms that senescent cells use to affect tumor treatment, hoping to provide information that will help improve the outcome of tumor treatment and promote further research in basic and clinical application of cellular senescence in tumor treatment.At present, bacterial infections are mainly treated with antibiotics, but new treatment methods are urgently needed because of growing problems with antibiotic resistance. Therefore, phage therapy will be a potential solution to the problem of bacterial drug resistance, and the combined use of bacteriophage and antibiotics is also considered a potential treatment option. selleck compound However, there has not been any well-designed clinical controlled trials on phage therapy. More future research needs to be done to solve the problems of phage therapy, for example, its narrow antibacterial spectrum, the uncertainty regarding treatment safety, and the bacterial resistance. Some refractory diseases such as breast cancer and alcoholic hepatitis are difficult to treat clinically. The successful experimental research on bacteriophages reported in these fields provides new ideas of treatment for more refractory diseases in the future. In addition, bacteriophages also showed promising performance in vaccine applications and osteanagenesis. We herein summarize the existing weaknesses of phage therapy and its application prospects in treating systemic diseases, hoping to promote further clinical application research of phage therapy.The incidence of gastric cancer is the highest among all kinds of malignant tumors in China. Because gastric cancer is very hard to identify in its early stage, the early diagnosis rate of gastric cancer in China is relatively low. At present, the pathological diagnosis of gastric cancer mainly depends on the diagnosis of pathologists. However, the gradual improvement of people's living standards and the growing demand for medical and health care have exacerbated the shortage of medical resources, which has become a even more serious problem. Therefore, there is an urgent need for new technologies to help deal with this challenge. In recent years, with the rapid development of artificial intelligence (AI) and digital pathology, AI-aided pathological diagnosis based on convolutional neural network (CNN) as the core technology is showing promises for improving the diagnostic efficiency of gastric cancer. It is also of great significance for the early diagnosis and treatment of the disease and the reduction of its high incidence and mortality. We herein summarize the application and progress of deep-learning CNN in pathological diagnosis of gastric cancer, as well as the existing problems and prospects of future development.One of the most important application of artificial intelligence (AI) in pathology is prediction, using morphological features, of patient prognosis and response to specific treatments. As one of the most common kinds of malignancies in the world and the crucial important cause of death due to malignant tumor among women, breast cancer has become the center of attention in clinical services. Axillary lymph node metastasis is an important prognostic factor in breast cancer. The accuracy of the assessment of axillary lymph node metastasis bears heavily on clinical diagnosis and treatment. At present, based on the principle of non-invasive procedures, many studies have been done to develop models that can be used to predict sentinel lymph node metastasis of breast cancer. However, different clinical and pathological parameters are used in these predictive models. How to analyze the clinical and pathological data of breast cancer patients in a more comprehensive way and how to establish a prediction model with better precision have become the future direction of development. In this paper, we describe the research progress of AI in pathology and the current status of its use in breast cancer research. We have conducted in-depth reflection and looked into the future of ways to predict effectively breast cancer lymph node metastasis and to establish more accurate and effective deep-learning algorithm based on AI assistance so as to continuously improve the diagnosis and treatment of breast cancer.In recent years, with the progress of image processing and network transmission technology, digital pathology (DP) is being more and more extensive applied in clinical practice, and new artificial-intelligence-assisted diagnosis technology based on digital imaging is emerging. Being a widely-used mature field, telepathology is changing the temporal and spatial scope of pathological diagnosis through remote electronic transmission of digital images. Fully digitized pathology departments are realizing the transformation of diagnostic modes and workflow from microscopic diagnosis to digital image computer review, and there have already been successful examples of large-scale fully digitized pathology departments. However, there are still many problems in the implementation of DP, for example, the quality stability and cost of the scanner, the validation of the system, the reengineering of the workflow, the training of pathologists and the change of their perception of DP, which all await further improvement. Although artificial intelligence diagnostic technology is showing great potential, its application in pathological work is still limited to the field of auxiliary diagnostics, and there is still a long way to go to the realization of comprehensive intelligent pathology. The rise of DP will bring about a profound change in the way of how pathological work is done and become a solid foundation for intelligent pathology.Precision pathological diagnosis plays a vital role in precision medicine. Both the limited resources available to pathologists and the incessant demands for further refinement and quantification of clinical diagnosis are posing new challenges for pathologists to meet the needs for precision pathological diagnosis. It is expected that artificial intelligence (AI) will be the powerful tool that will help find solutions to this problem from different angles. The author of this article elaborated on a number of ways in which AI can help promote precision pathological diagnosis, including AI-assisted precision extraction of tissue samples, AI-assisted precision histopathologic diagnosis, AI-assisted histological grading and quantitative scoring, AI-assisted precision assessment of tumor biomarkers, AI-assisted prediction of molecular features and precision interpretation of biological information based on hematoxylin-eosin (HE) stained images, the realization of in-depth precision diagnosis based on AI-assisted information integration, and AI-assisted accurate prediction of patient survival and prognosis based on HE-stained images. The paper presents to the readers the future of smart pathology that AI will help usher in.
To (i) introduce the deformed complex vertebral osteotomy (DCVO) technique for the treatment of severe congenital angular spinal kyphosis; (ii) evaluate the sagittal correction efficacy of the DCVO technique; and (iii) discuss the advantages and limitations of the DCVO technique.
Multiple malformed vertebrae were considered a malformed complex, and large-range and angle wedge osteotomy was performed within the complex using the DCVO technique. Patients with local kyphosis greater than 80° who were treated with DCVO and did not have tumors, infections, or a history of surgery were included. A retrospective case study was performed in these patients with severe angular kyphosis who underwent the DCVO technique from 2008 to 2016. Demographic data, the operating time, and the volume of intraoperative blood loss were collected. Spinopelvic parameters (pelvic incidence [PI], pelvic tilt [PT], and sacral slope [SS]), local and global sagittal parameters (deformity angle, thoracic kyphosis [TK], and lumbar lordosis [LL]), visual analog scale (VAS) score, and Oswestry disability index (ODI) score were recorded pre- and postoperatively.
Read More: https://www.selleckchem.com/
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team