Notes
Notes - notes.io |
This article provides an overview of the connection between the microstructural state and the mechanical response of various bioresorbable polylactide (PLA) devices for medical applications. PLLA is currently the most commonly used material for bioresorbable stents and sutures, and its use is increasing in many other medical applications. The non-linear mechanical response of PLLA, due in part to its low glass transition temperature (T g ≈ 60 °C), is highly sensitive to the molecular weight and molecular orientation field, the degree of crystallinity, and the physical aging time. These microstructural parameters can be tailored for specific applications using different resin formulations and processing conditions. The stress-strain, deformation, and degradation response of a bioresorbable medical device is also strongly dependent on the time history of applied loads and boundary conditions. All of these factors can be incorporated into a suitable constitutive model that captures the multiple physics that are involved in the device response. Currently developed constitutive models already provide powerful computations simulation tools, and more progress in this area is expected to occur in the coming years.Osteoarthritis causes changes in the subchondral bone structure and composition. Plain radiography is a cheap, fast, and widely available imaging method. Bone tissue can be well seen from plain radiograph, which however is only a 2D projection of the actual 3D structure. Therefore, the aim was to investigate the relationship between bone density- and structure-related parameters from 2D plain radiograph and 3D bone parameters assessed from micro computed tomography (µCT) ex vivo. Right tibiae from eleven cadavers without any diagnosed joint disease were imaged using radiography and with µCT. Bone density- and structure-related parameters were calculated from four different locations from the radiographs of proximal tibia and compared with the volumetric bone microarchitecture from the corresponding regions. Bone density from the plain radiograph was significantly related with the bone volume fraction (r = 0.86; n = 44; p less then 0.01). Mean homogeneity index for orientation of local binary patterns (HI(angle,mean)) and fractal dimension of vertical structures (FD(Ver)) were related (p less then 0.01) with connectivity density (HI(angle,mean) r = -0.73, FD(Ver) r = 0.69) and trabecular separation (HI(angle,mean) r = 0.73, FD(Ver) r = -0.70) when all ROIs were pooled together (n = 44). Bone density and structure in tibia from standard clinically available 2D radiographs are significantly correlated with true 3D microstructure of bone.This paper presents the analysis of detailed hemodynamics in the aortas of four patients following replacement with a composite bio-prosthetic valve-conduit. Magnetic resonance image-based computational models were set up for each patient with boundary conditions comprising subject-specific three-dimensional inflow velocity profiles at the aortic root and central pressure waveform at the model outlet. Two normal subjects were also included for comparison. The purpose of the study was to investigate the effects of the valve-conduit on flow in the proximal and distal aorta. The results suggested that following the composite valve-conduit implantation, the vortical flow structure and hemodynamic parameters in the aorta were altered, with slightly reduced helical flow index, elevated wall shear stress and higher non-uniformity in wall shear compared to normal aortas. Inter-individual analysis revealed different hemodynamic conditions among the patients depending on the conduit configuration in the ascending aorta, which is a key factor in determining post-operative aortic flow. Introducing a natural curvature in the conduit to create a smooth transition between the conduit and native aorta may help prevent the occurrence of retrograde and recirculating flow in the aortic arch, which is particularly important when a large portion or the entire ascending aorta needs to be replaced.Cells inside a 3D matrix (such as tissue extracellular matrix or biomaterials) sense their insoluble environment through specific binding interactions between their adhesion receptors and ligands present on the matrix surface. Despite the critical role of the insoluble matrix in cell regulation, there exist no widely-applicable methods for quantifying the chemical stimuli provided by a matrix to cells. Here, we describe a general-purpose technique for quantifying in situ the density of ligands for specific cell adhesion receptors of interest on the surface of a 3D matrix. This paper improves significantly the accuracy of the procedure introduced in a previous publication by detailed marker characterization, optimized staining, and improved data interpretation. The optimized methodology is utilized to quantify the ligands of integrins α 1 β 1, α 2 β 1 on two kinds of matched porous collagen scaffolds, which are shown to possess significantly different ligand density, and significantly different ability to induce peripheral nerve regeneration in vivo. Data support the hypothesis that cell adhesion regulates contractile cell phenotypes, recently shown to be inversely related to organ regeneration. The technique provides a standardized way to quantify the surface chemistry of 3D matrices, and a means for introducing matrix effects in quantitative biological models.Ultrasound elastography (UE) has been widely used as a "digital palpation" tool to characterize tissue mechanical properties in the clinic. UE benefits from the capability of noninvasively generating 2-D elasticity encoded maps. 2,2,2-Tribromoethanol This spatial distribution of elasticity can be especially useful in the in vivo assessment of tissue engineering scaffolds and implantable drug delivery platforms. However, the detection limitations have not been fully characterized and thus its true potential has not been completely discovered. Characterization studies have focused primarily on the range of moduli corresponding to soft tissues, 20-600 kPa. However, polymeric biomaterials used in biomedical applications such as tissue scaffolds, stents, and implantable drug delivery devices can be much stiffer. In order to explore UE's potential to assess mechanical properties of biomaterials in a broader range of applications, this work investigated the detection limit of UE strain imaging beyond soft tissue range. To determine the detection limit, measurements using standard mechanical testing and UE on the same polydimethylsiloxane samples were compared and statistically evaluated. The broadest detection range found based on the current optimized setup is between 47 kPa and 4 MPa which exceeds the modulus of normal soft tissue suggesting the possibility of using this technique for stiffer materials' mechanical characterization. The detectable difference was found to be as low as 157 kPa depending on sample stiffness and experimental setup.Research has consistently demonstrated that contextual support is crucial towards the psychological functioning of adolescents with chronic conditions. However, the literature has predominantly focused on parental support instead of adopting an integrated approach to parental and peer support. The present manuscript with two longitudinal studies in adolescents with Type 1 diabetes and congenital heart disease examined the extent to which different clusters of maternal, paternal, and peer support at baseline were related to well- and ill-being over time. In both studies, four clusters emerged combined support, parental support, peer support, and lack of support. Follow-up longitudinal analyses indicated that especially combined support from parents and peers proved to be of crucial importance towards psychological functioning. The present studies demonstrated the value of a typological approach for assessing social support in adolescents with chronic conditions. In addition to focusing on parental support, future research should assess peer support as well in these adolescents.
The steroid receptor coactivator SRC3 is essential for the transcriptional activity of estrogen receptor α (ERα). SRC3 is sufficient to cause mammary tumorigenesis, and has also been implicated in endocrine resistance. SRC3 is posttranslationally modified by phosphorylation, but these events have not been investigated with regard to functionality or disease association. Here, we investigate the spatial selectivity of SRC3-pS543/DNA binding over the human genome and its expression in primary human breast cancer in relation with outcome.
Chromatin immunoprecipitation, coupled with sequencing, was used to determine the chromatin binding patterns of SRC3-pS543 in the breast cancer cell line MCF7 and two untreated primary breast cancers. IHC was used to assess the expression of SRC3 and SRC3-pS543 in 1,650 primary breast cancers. The relationship between the expression of SRC3 and SRC3-pS543, disease-free survival (DFS), and breast cancer specific survival (BCSS) was assessed.
Although total SRC3 is selectively found at enhancer regions, SRC3-pS543 is recruited to promoters of ERα responsive genes, both in the MCF7 cell line and primary breast tumor specimens. SRC3-pS543 was associated with both improved DFS (P = 0.003) and BCSS (P = 0.001) in tamoxifen untreated high-risk patients, such a correlation was not seen in tamoxifen-treated cases, the interaction was statistically significant (P = 0.001). Multivariate analysis showed SRC3-pS543 to be an independent prognostic factor.
Phosphorylation of SRC3 at S543 affects its genomic interactions on a genome-wide level, where SRC3-pS543 is selectively recruited to promoters of ERα-responsive genes. SRC3-pS543 is a prognostic marker, and a predictive marker of response to endocrine therapy.
Phosphorylation of SRC3 at S543 affects its genomic interactions on a genome-wide level, where SRC3-pS543 is selectively recruited to promoters of ERα-responsive genes. SRC3-pS543 is a prognostic marker, and a predictive marker of response to endocrine therapy.
The emerging need for rational combination treatment approaches led us to test the concept that cotargeting MEK and CDK4/6 would prove efficacious in KRAS-mutant (KRAS(mt)) colorectal cancers, where upregulated CDK4 and hyperphosphorylated retinoblastoma (RB) typify the vast majority of tumors.
Initial testing was carried out in the HCT-116 tumor model, which is known to harbor a KRAS mutation. Efficacy studies were then performed with five RB(+) patient-derived colorectal xenograft models, genomically diverse with respect to KRAS, BRAF, and PIK3CA mutational status. Tolerance, efficacy, and pharmacodynamic evaluation of target modulation were evaluated in response to daily dosing with either agent alone or concurrent coadministration.
Synergy was observed in vitro when HCT-116 cells were treated over a broad range of doses of trametinib and palbociclib. Subsequent in vivo evaluation of this model showed a higher degree of antitumor activity resulting from the combination compared to that achievable with single-agent treatment. Testing of colorectal patient-derived xenograft (PDX) models further showed that combination of trametinib and palbociclib was well tolerated and resulted in objective responses in all KRAS(mt) models tested. Stasis was observed in a KRAS/BRAF wild-type and a BRAF(mt) model.
Combination of trametinib and palbociclib was well tolerated and highly efficacious in all three KRAS-mutant colorectal cancer PDX models tested. Promising preclinical activity seen here supports clinical evaluation of this treatment approach to improve therapeutic outcome for patients with metastatic colorectal cancer.
Combination of trametinib and palbociclib was well tolerated and highly efficacious in all three KRAS-mutant colorectal cancer PDX models tested. Promising preclinical activity seen here supports clinical evaluation of this treatment approach to improve therapeutic outcome for patients with metastatic colorectal cancer.
Homepage: https://www.selleckchem.com/products/2-2-2-tribromoethanol.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team