Notes
Notes - notes.io |
Halide perovskites have great potential for use in high-performance light-emitting diodes (LEDs) and displays. Here, a perovskite LEDs (PeLEDs) fabricated directly on an elastomer substrate, in which every single layer in the device from bottom anode to top cathode is patterned solely using a highly scalable inkjet printing process, is reported. Compared to PeLEDs made using conventional microfabrication processes, the printing process significantly shortens the fabrication time by at least tenfold (from over 5 h to less than 25 min). The all-printed PeLEDs have a novel 4-layer structure (bottom electrode, perovskite emissive layer, buffer layer, top electrode) without separate electron or hole transporting layers. For flexible PeLEDs printed directly in ambient conditions, a turn-on voltage, maximum luminance intensity, and maximum current efficiency of 3.46 V, 10227 cd m-2 , and 2.01 cd A-1 , respectively, is achieved. The devices also exhibit excellent robustness and stability even when bent to a curvature radius of 2.5 mm. The reported device structure and fabrication processes can enable high-performance flexible PeLEDs to be manufactured over a larger area at extremely low cost and fast speed, which can facilitate the adoption of the promising PeLED technology in the emerging foldable displays, smart wearables, and many other applications.As a low-cost substitute that uses no expensive rare-earth elements for the high-efficiency Cu(In,Ga)(S,Se)2 solar cell, the Cu2 ZnSn(S,Se)4 (CZTSSe) solar cell has borrowed optimization strategies used for its predecessor to improve its device performance, including a profiled band gap and surface inversion. Indeed, there have been few reports of constructing CZTSSe absorber layers with surface inversion to improve efficiency. Here, a strategy that designs the CZTSSe absorber to attain surface modification by using n-type Ag2 ZnSnS4 is demonstrated. It has been discovered that Ag plays two major roles in the kesterite thin film devices surface inversion and front gradient distribution. It has not only an excellent carrier transport effect and reduced probability of electron-hole recombination but also results in increased carrier separation by increasing the width of the depletion region, leading to much improved VOC and JSC . Finally, a champion CZTSSe solar cell renders efficiency as high as 12.55%, one of the highest for its type, with the open-circuit voltage deficit reduced to as low as 0.306 V (63.2% Shockley-Queisser limit). The band engineering for surface modification of the absorber and high efficiency achieved here shine a new light on the future of the CZTSSe solar cell.Hybrid perovskites are among the most promising materials for optoelectronic applications. Their 2D crystalline form is even more interesting since the alternating inorganic and organic layers naturally forge a multiple quantum-well structure, leading to the formation of stable excitonic resonances. Nevertheless, a controlled modulation of the quantum well width, which is defined by the number of inorganic layers (n) between two organic ones, is not trivial and represents the main synthetic challenge in the field. Here, a conceptually innovative approach to easily tune n in lead iodide perovskite single-crystalline flakes is presented. The judicious use of potassium iodide is found to modulate the supersaturation levels of the precursors solution without being part of the final products. This allows to obtain a fine tuning of the n value. The excellent optical quality of the as synthesized flakes guarantees an in-depth analysis by Fourier-space microscopy, revealing that the excitons orientation can be manipulated by modifying the number of inorganic layers. Excitonic out-of-plane component, indeed, is enhanced when "n" is increased. The combined advances in the synthesis and optical characterization fill in the picture of the exciton behavior in low-dimensional perovskite, paving the way to the design of materials with improved optoelectronic characteristics.Histopathological assessments of young-of-the-year (age-0) Smallmouth Bass Micropterus dolomieu in the Susquehanna River drainage identified a high prevalence of the myxozoan Myxobolus inornatus. This myxozoan infects the connective tissue of the muscle below the skin but is sometimes observed in the esophagus and buccal cavity. In some instances, shallow infections cause breaks in the skin, which could increase the chance of opportunistic bacterial infections. Several microbial pathogens, including Flavobacterium columnare, Aeromonas spp., and Largemouth Bass virus, have also been cultured from clinically diseased young of year. A multiplex fluorescence in situ hybridization (FISH) assay was developed to determine potential colocalization of M. inornatus, Flavobacterium spp., and Aeromonas spp. infections. With FISH, 75% of age-0 Smallmouth Bass exhibited M. inornatus infections, 10% had Aeromonas spp. infections, and 5% had Flavobacterium spp. infections, while 3% had coinfections with both bacterial species and M. inornatus. The results of the multiplex FISH assay revealed a low occurrence of coinfections of Flavobacterium spp. and/or Aeromonas spp. with M. inornatus in randomly sampled individuals.Iron ion batteries using Fe2+ as a charge carrier have yet to be widely explored, and they lack high-performing Fe2+ hosting cathode materials to couple with the iron metal anode. Here, it is demonstrated that VOPO4 ∙2H2 O can reversibly host Fe2+ with a high specific capacity of 100 mAh g-1 and stable cycling performance, where 68% of the initial capacity is retained over 800 cycles. In sharp contrast, VOPO4 ∙2H2 O's capacity of hosting Zn2+ fades precipitously over tens of cycles. VOPO4 ∙2H2 O stores Fe2+ with a unique mechanism, where upon contacting the electrolyte by the VOPO4 ∙2H2 O electrode, Fe2+ ions from the electrolyte get oxidized to Fe3+ ions that are inserted and trapped in the VOPO4 ∙2H2 O structure in an electroless redox reaction. The trapped Fe3+ ions, thus, bolt the layered structure of VOPO4 ∙2H2 O, which prevents it from dissolution into the electrolyte during (de)insertion of Fe2+ . The findings offer a new strategy to use a redox-active ion charge carrier to stabilize the layered electrode materials.Klinefelter syndrome and monozygotic twins are both rare. The reports of monozygotic twins with Klinefelter syndrome to have undergone fertility treatment are uncommon. This case report describes a case of 30-year-old monozygotic adult twin brothers diagnosed with nonmosaic Klinefelter syndrome following the complaint of infertility. The result of semen analysis showed cryptozoospermia (very low sperm count) and azoospermia (zero sperm count) with physical findings and lifestyles being very similar. They both underwent microtesticular sperm extraction. One had successful sperm retrieval and achieved pregnancy through intracytoplasmic sperm injection, whereas the other did not. Testicular pathological findings showed Sertoli cell-only syndrome. To the best of our knowledge, this is the first report on monozygotic adult twins both of whom underwent microtesticular sperm extraction and resulted in different outcomes.Conservation issues are often complicated by sociopolitical controversies that reflect competing philosophies and values regarding natural systems, animals, and people. Effective conservation outcomes require managers to engage myriad influences (social, cultural, political, and economic, as well as ecological). The contribution of conservation scientists who generate the information on which solutions rely is constrained if they are unable to acknowledge how personal values and disciplinary paradigms influence their research and conclusions. Conservation challenges involving controversial species provide an opportunity to reflect on the paradigms and value systems that underpin the discipline and practice of conservation science. Recent analyses highlight the ongoing reliance on normative values in conservation. We frame our discussion around controversies over feral horses (Equus ferus caballus) in the Canadian West and New Zealand and suggest that a lack of transparency and reflexivity regarding normative values continues to prevent conservation practitioners from finding resilient conservation solutions. We suggest that growing scrutiny and backlash to many normative conservation objectives necessitates formal reflexivity methods in conservation biology research, similar to those required of researchers in social science disciplines. Moreover, given that much conservation research and action continues to prioritize Western normative values regarding nature and conservation, we suggest that adopting reflexive methods more broadly is an important step toward more socially just research and practice. Formalizing such methods and requiring reflexivity in research will not only encourage reflection on how personal and disciplinary value systems influence conservation work but could more effectively engage people with diverse perspectives and values in conservation and encourage more novel and resilient conservation outcomes, particularly when dealing with controversial species.Refractory high-entropy alloys (RHEAs) show promising applications at high temperatures. However, achieving high strengths at elevated temperatures above 1173K is still challenging due to heat softening. find more Using intrinsic material characteristics as the alloy-design principles, a single-phase body-centered-cubic (BCC) CrMoNbV RHEA with high-temperature strengths (beyond 1000 MPa at 1273 K) is designed, superior to other reported RHEAs as well as conventional superalloys. The origin of the high-temperature strength is revealed by in situ neutron scattering, transmission-electron microscopy, and first-principles calculations. The CrMoNbV's elevated-temperature strength retention up to 1273 K arises from its large atomic-size and elastic-modulus mismatches, the insensitive temperature dependence of elastic constants, and the dominance of non-screw character dislocations caused by the strong solute pinning, which makes the solid-solution strengthening pronounced. The alloy-design principles and the insights in this study pave the way to design RHEAs with outstanding high-temperature strength.Composite materials can provide remarkable improvements over the individual constituents. Especially, with a liquid component introduced into a solid porous host, solid-liquid host-guest composites have recently come to the forefront with exceptional functions that promise them for a wealth of applications. Combining the unprecedented dynamic, transparent, omniphobic, self-healing, diffusive and adaptive nature of functional liquid with inherent solid host's property, solid-liquid host-guest composites can realize the ease of fabrication, long-term stability, and a broad spectrum of enhanced properties, which cannot be fully met by conventional solid-solid composites or liquid-liquid composites. This review presents the state-of-the-art progress in solid-liquid host-guest composites. Initially, the concept, classification, design strategy, as well as fabrication methods as a path forward to develop the composites are unraveled, and further it is elaborated on how the functionality of porous solid and functional liquid can be harnessed to create composites with a broad range of unique properties, especially, the optical, thermal, electric, mechanical, sorption, and separation properties.
Homepage: https://www.selleckchem.com/products/OSI-906.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team