Notes
Notes - notes.io |
The bactericidal activity of metal oxide nanoparticles (NPs) offers extensive opportunities in bioengineering and biomedicines. Bioengineered transition metals used in various forms against lethal microbes. In this study, Cadmium Oxide nanoparticles (CdO-NPs) were prepared through the co-precipitation method using fungal strain Penicillium oxalicum and cadmium acetate solution. The structure and elemental composition of the prepared NPs were determined by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-Vis absorption spectroscopy, scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). Antibacterial activity was assessed through well diffusion method against Staphylococcus aureus (S. aureus), Shigella dysenteriae (S. dysenteriae), and Pseudomonas aeruginosa (P. aeruginosa). In addition, reactive oxygen species (ROS), reducing sugars and protein leakage contribution was examined against selected strains. The XRD analysis proved that the synthesized CdO-NPs possess a crystalline structure with an average crystalline size of 40-80 nm. FTIR confirmed the presence of organic compounds on the particle surface, while UV showed stability of the particles. SEM and EDS confirmed that CdO-NPs were successfully prepared and spherical. The maximum zone of inhibition against S. dysenteriae and P. aeruginosa was found and showed a less optical density of 0.086 after 18 h. ROS, reducing sugar, and protein leakage assay showed a significant difference as compared to control. Based on the present study, it is recommended that microbial mediated synthesized nanoparticles can be used as biomedicines for the treatment of different types of bacterial infections. The intestinal protozoan specie, Cryptosporidium causes serious diarrheal syndrome in humans and animals worldwide. However, limited knowledge is known about the infection caused by this specie in yaks in Naqu. About 950 serum and 150 fecal samples were collected and assayed by using commercial ELISA kits and nPCR detection methods to find the prevalence and molecular characterization of Cryptosporidium spp. in yaks. Results found that 103 out of 950 (10.8%) serums were uncovered against C. parvum antibodies. In different regions, the prevalence of C. parvum in yaks were in a range from 9.1% to 16.7%, with obvious difference among the three areas (P less then 0.001). In male and female yaks, the prevalence of C. parvum was found to be 7.2% and 13.3% respectively (P less then 0.001); and a significant difference (P less then 0.001) with a range of 9.8%-18.2% was observed among different age groups. Out of 150 fecal samples, only 2 (1.3%) positive samples were detected via nPCR. The positive samples were sequenced and identified to be C. bovis. The two isolates were clustered to cattle and yak clade separately. Our results highlight the prevalence and epidemiological status of Cryptosporidium spp. in yaks which may contribute towards the prevention and control of this zoonotic disease in Naqu, China. BACKGROUND Bovine viral diarrhea is an infectious disease that causes symptoms such as bovine diarrhea and abortion. It can cause severe losses to the animal husbandry, and the overall epidemic situation of yak's BVDV in China is unclear. Meta-analysis can reveal the basic epidemic situation of BVDV in different yak distribution areas in China, and estimate potentially related factors, to pave the way for clarifying the epidemic situation of yak in the domestic scope. METHODS We proceeded to a systematic review and meta-analysis of data from papers on the BVDV incidence and prevalence in yaks in China by searching PubMed, ScienceDirect, Chinese Web of Knowledge (CNKI), Wanfang, and Chongqing VIP for publication from 1987 to 2019. We excluded reviews and duplicate studies, 24 studies denouncing the prevalence of BVDV in yak in China were selected upon our inclusion criterion finally. We estimated the pooled prevalence of BVDV infection in yaks by a random-effects model and evaluated its overall infection burdetial risk factors. This study aimed to evaluate the efficacy of hematoporphyrin monomethyl ether (HMME)-mediated sonodynamic antimicrobial chemotherapy (SACT) on Porphyromonas gingivalis (P. gingivalis). P. gingivalis (ATCC 33277) was used in the present study. The bacterial suspension was randomly divided into five groups Group 1 was incubated for 2 h in the dark with HMME in various concentrations (10, 20, 30 and 40 μg/mL). Then exposed to 1 MHz ultrasound frequency with 3 W/cm2 ultrasound intensity for 10 min. Group 2 was incubated with 40 μg/mL HMME and then irradiated with 2, 4, 6, 8 and 10 min ultrasonic time. Group 3 received different HMME concentration (10, 20, 30 and 40 μg/mL) treatment alone with no ultrasound as the HMME control group. Group 4 received ultrasound treatment alone in different ultrasonic time (2, 4, 6, 8 and 10 min) with no HMME as the ultrasound control group. Group 5 received no treatment as the no treatment control group. After the SACT, the bactericidal effect was determined by the colony forming unit assay. The intracellular content of reactive oxygen species (ROS) was detected using the laser scanning confocal microscope based on DCFH-DA. 4.7 lg reduction in CFU, When P. gingivalis was treated with ultrasound (3 W/cm2 for 10 min) at 40 μg/mL HMME concentration (P less then 0.01). The intracellular ROS in SDT group had a significant difference in comparison with the no treatment control group (P less then 0.01). HMME mediated SACT can be a potential antibacterial therapy to significantly inhibit P. gingivalis growth. BACKGROUND Lactobacillus brevis is a major contaminant of spoiled beer. And it was able to enter VBNC state and cause false negative detection, which poses a major challenge to the brewing industry. METHODS The genomic DNA of L. brevis BM-LB13908 was extracted and purified to form a sequencing library that meets the quality requirements and was sequenced. The sequencing results were then screened and assembled to obtain the entire genome sequence of L. brevis. Predicted genes were annotated by GO database, KEGG pathway database and COG functional classification system. RESULTS The final assembly yielded 275 scaffolds of a total length of 2 840 080 bp with a G+C content of 53.35%. There were 2357, 701, 1519 predicted genes with corresponding GO functional, COG functional, and KEGG biological pathway annotations, respectively. The genome of L. brevis BM-LB13908 contains hop resistance gene horA and multiple genes related to the formation of VBNC state. CONCLUSIONS This report describes the draft genome sequence of L. brevis BM-LB13908, a spoilage strain isolated from finished beer sample. This study may support further study on L. brevis and other beer spoilage bacteria, and prevent and control beer spoilage caused by microorganisms. Candida albicans is a common human fungal pathogen that causes disease ranging from superficial to lethal infections. C. albicans grows as budding yeast which can transform into hyphae in response to various environmental or biological stimuli. Although both forms have been associated with virulence, the hyphae form is responsible for the formation of multi-drug resistance biofilm. Here, new compounds were designed to selectively inhibit C. albicans hyphae formation without affecting human cells to afford sufficient safety. The newly designed 5-[3-substitued-4-(4-substituedbenzyloxy)-benzylidene]-2-thioxo-thiazolidin-4-one derivatives, named SR, showed very specific and effective inhibition activity against C. albicans hyphae formation. SR compounds caused hyphae inhibition activity at concentrations 10-40 fold lower than the concentration required to inhibit Candida yeast and bacterial growths. The anti-hyphae inhibition activities of SR compounds were via activation of the hyphae transcription repressor gene, TUP1. Correlation studies between the expression of TUP1 gene and the activity of SR compounds confirmed that the anti-C. albicans activities of SR compounds were via inhibition of hyphae formation. learn more The newly designed SR compounds showed 10-40% haemolytic activity on human erythrocytes when compared to 100% haemolysis by 0.1% triton employed as positive control. Furthermore, theoretical prediction of absorption, distribution, metabolism, excretion, and toxicity (ADMET) of SR compounds confirmed their safety, efficient metabolism and possible oral bioavailability. With the minimal toxicity and significant activity of the newly-designed SR compounds, a future optimization of pharmaceutical formulation may develop a promising inhibitor of hyphal formation not only for C. albicans but also for other TUP1- dependent dimorphic fungal infections. Leishmaniasis are a group of neglected infectious diseases caused by protozoa of the genus Leishmania with distinct presentations. The available leishmaniasis treatment options are either expensive and/or; cause adverse effects and some are ineffective for resistant Leishmania strains. Therefore, molecules derived from natural products as the monoterpene carvacrol, have attracted interest as promising anti-leishmania agents. However, the therapeutic use of carvacrol is limited due to its low aqueous solubility, rapid oxidation and volatilization. Thus, the development of nanostructured lipid carriers (NLCs) was proposed in the present study as a promising nanotechnology strategy to overcome these limitations and enable the use of carvacrol in leishmaniasis therapy. Carvacrol NLCs were obtained using a warm microemulsion method, and evaluated regarding the influence of lipid matrix and components concentration on the NLCs formation. NLCs were characterized by DSC and XRD as well. In addition, to the in vitro ct this phenolic monoterpene undergoes enterohepatic circulation and therefore presented a long half-life (t1/2) and low clearance (Cl). In addition, C0, mean residence time (MRT) and Vdss of encapsulated carvacrol were higher than free carvacrol (p less then 0.05), favoring a higher distribution of carvacrol in the target tissues. Thus, it is possible to conclude that the developed NLCs are a promising delivery system for leishmaniasis treatment. V.A Japan Society of Clinical Oncology (JSCO)-hosted expert meeting was held in Japan on 27 October 2019 which comprised experts from the JSCO, the Japanese Society of Medical Oncology (JSMO), the European Society for Medical Oncology (ESMO), the American Society of Clinical Oncology (ASCO), and the Taiwan Oncology Society (TOS). The purpose of the meeting was to focus on what we have learnt from both microsatellite instability (MSI)/deficient mismatch repair (dMMR) biomarkers in predicting the efficacy of anti-programmed death-1 (PD-1)/programmed death ligand-1 (PD-L1) immunotherapy, and the neurotrophic tyrosine receptor kinase (NTRK) gene fusions in predicting the efficacy of inhibitors of the tropomyosin receptor kinase (TRK) proteins, across a range of solid tumour types. The recent regulatory approvals of the anti PD-1 antibody pembrolizumab and the TRK inhibitors larotrectinib and entrectinib, based on specific tumour biomarkers rather than specific tumour type, have heralded a paradigm shift in cancer treatment approaches.
Website: https://www.selleckchem.com/products/rrx-001.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team