NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Study Safe-keeping Stability of Triggered Gotten back Silicone Powdered ingredients Changed Asphalt.
Different templates were compared and an optimized template was created. The classification scored a F1-measure of 86.7% for evaluation on a data set acquired in a clinical setting. We believe that this approach can be transferred to home-monitoring systems and will facilitate a more efficient and automated gait analysis.Application and use of deep learning algorithms for different healthcare applications is gaining interest at a steady pace. However, use of such algorithms can prove to be challenging as they require large amounts of training data that capture different possible variations. This makes it difficult to use them in a clinical setting since in most health applications researchers often have to work with limited data. Ridaforolimus Less data can cause the deep learning model to over-fit. In this paper, we ask how can we use data from a different environment, different use-case, with widely differing data distributions. We exemplify this use case by using single-sensor accelerometer data from healthy subjects performing activities of daily living - ADLs (source dataset), to extract features relevant to multi-sensor accelerometer gait data (target dataset) for Parkinson's disease classification. We train the pre-trained model using the source dataset and use it as a feature extractor. We show that the features extracted for the target dataset can be used to train an effective classification model. Our pretrained source model consists of a convolutional autoencoder, and the target classification model is a simple multi-layer perceptron model. We explore two different pre-trained source models, trained using different activity groups, and analyze the influence the choice of pre-trained model has over the task of Parkinson's disease classification.Parkinson's disease is diagnosed based on expert clinical observation of movements. One important clinical feature is decrement, whereby the range of finger motion decreases over the course of the observation. This decrement has been assumed to be linear but has not been examined closely.We previously developed a method to extract a time series representation of a finger-tapping clinical test from 137 smart- phone video recordings. Here, we show how the signal can be processed to visualize archetypal progression of decrement. We use k-means with features derived from dynamic time warping to compare similarity of time series. To generate the archetypal time series corresponding to each cluster, we apply both a simple arithmetic mean, and dynamic time warping barycenter averaging to the time series belonging to each cluster.Visual inspection of the cluster-average time series showed two main trends. These corresponded well with participants with no bradykinesia and participants with severe bradykinesia. The visualizations support the concept that decrement tends to present as a linear decrease in range of motion over time.Clinical relevance- Our work visually presents the archetypal types of bradykinesia amplitude decrement, as seen in the Parkinson's finger-tapping test. We found two main patterns, one corresponding to no bradykinesia, and the other showing linear decrement over time.Drug Induced Parkinsonism (DIP) is the most common, debilitating movement disorder induced by antipsychotics. There is no tool available in clinical practice to effectively diagnose the symptoms at the onset of the disease. In this study, the variations in gait accelerometer data due to the intermittency of tremor at the initial stages is examined. These variations are used to train a logistic regression model to predict subjects with early-stage DIP. The logistic classifier predicts if a subject is a DIP or control with approximately 89% sensitivity and 96% specificity. This paper discusses the algorithm used to extract the features in gait data for training the classifier to predict DIP at the earliest.Clinical Relevance- Diagnosing the disease and the causative drug is vital as the physical health of a patient who is mentally unstable can deteriorate with prolonged usage of the drug. The proposed model helps clinicians to diagnose the disease at the onset of tremors with an accuracy of 93.58%.A stethoscope is a ubiquitous tool used to 'listen' to sounds from the chest in order to assess lung and heart conditions. With advances in health technologies including digital devices and new wearable sensors, access to these sounds is becoming easier and abundant; yet proper measures of signal quality do not exist. In this work, we develop an objective quality metric of lung sounds based on low-level and high-level features in order to independently assess the integrity of the signal in presence of interference from ambient sounds and other distortions. The proposed metric outlines a mapping of auscultation signals onto rich low-level features extracted directly from the signal which capture spectral and temporal characteristics of the signal. Complementing these signal-derived attributes, we propose high-level learnt embedding features extracted from a generative auto-encoder trained to map auscultation signals onto a representative space that best captures the inherent statistics of lung sounds. Integrating both low-level (signal-derived) and high-level (embedding) features yields a robust correlation of 0.85 to infer the signal-to-noise ratio of recordings with varying quality levels. The method is validated on a large dataset of lung auscultation recorded in various clinical settings with controlled varying degrees of noise interference. The proposed metric is also validated against opinions of expert physicians in a blind listening test to further corroborate the efficacy of this method for quality assessment.Respiratory condition has received a great amount of attention nowadays since respiratory diseases recently become the globally leading causes of death. Traditionally, stethoscope is applied in early diagnosis but it requires clinician with extensive training experience to provide accurate diagnosis. Accordingly, a subjective and fast diagnosing solution of respiratory diseases is highly demanded. Adventitious respiratory sounds (ARSs), such as crackle, are mainly concerned during diagnosis since they are indication of various respiratory diseases. Therefore, the characteristics of crackle are informative and valuable regarding to develop a computerised approach for pathology-based diagnosis. In this work, we propose a framework combining random forest classifier and Empirical Mode Decomposition (EMD) method focusing on a multi-classification task of identifying subjects in 6 respiratory conditions (healthy, bronchiectasis, bronchiolitis, COPD, pneumonia and URTI). Specifically, 14 combinations of respiratory sound segments were compared and we found segmentation plays an important role in classifying different respiratory conditions. The classifier with best performance (accuracy = 0.88, precision = 0.91, recall = 0.87, specificity = 0.91, F1-score = 0.81) was trained with features extracted from the combination of early inspiratory phase and entire inspiratory phase. To our best knowledge, we are the first to address the challenging multi-classification problem.Tracheal sounds represent information about the upper airway and respiratory airflow, however, they can be contaminated by the snoring sounds. The sound of snoring has spectral content in a wide range that overlaps with that of breathing sounds during sleep. For assessing respiratory airflow using tracheal breathing sound, it is essential to remove the effect of snoring. In this paper, an automatic and unsupervised wavelet-based snoring removal algorithm is presented. Simultaneously with full-night polysomnography, the tracheal sound signals of 9 subjects with different levels of airway obstruction were recorded by a microphone placed over the trachea during sleep. The segments of tracheal sounds that were contaminated by snoring were manually identified through listening to the recordings. The selected segments were automatically categorized based on including discrete or continuous snoring pattern. Segments with discrete snoring were analyzed by an iterative wave-based filtering optimized to separate large spectral components related to snoring from smaller ones corresponded to breathing. Those with continuous snoring were first segmented into shorter segments. Then, each short segments were similarly analyzed along with a segment of normal breathing extracted from the recordings during wakefulness. The algorithm was evaluated by visual inspection of the denoised sound energy and comparison of the spectral densities before and after removing snores, where the overall rate of detectability of snoring was less than 2%.Clinical Relevance- The algorithm provides a way of separating snoring pattern from the tracheal breathing sounds. Therefore, each of them can be analyzed separately to assess respiratory airflow and the pathophysiology of the upper airway during sleep.We propose a robust and efficient lung sound classification system using a snapshot ensemble of convolutional neural networks (CNNs). A robust CNN architecture is used to extract high-level features from log mel spectrograms. The CNN architecture is trained on a cosine cycle learning rate schedule. Capturing the best model of each training cycle allows to obtain multiple models settled on various local optima from cycle to cycle at the cost of training a single mode. Therefore, the snapshot ensemble boosts performance of the proposed system while keeping the drawback of expensive training of ensembles moderate. To deal with the class-imbalance of the dataset, temporal stretching and vocal tract length perturbation (VTLP) for data augmentation and the focal loss objective are used. Empirically, our system outperforms state-of-the-art systems for the prediction task of four classes (normal, crackles, wheezes, and both crackles and wheezes) and two classes (normal and abnormal (i.e. crackles, wheezes, and both crackles and wheezes)) and achieves 78.4% and 83.7% ICBHI specific micro-averaged accuracy, respectively. The average accuracy is repeated on ten random splittings of 80% training and 20% testing data using the ICBHI 2017 dataset of respiratory cycles.This paper focuses on the use of an attention-based encoder-decoder model for the task of breathing sound segmentation and detection. This study aims to accurately segment the inspiration and expiration of patients with pulmonary diseases using the proposed model. Spectrograms of the lung sound signals and labels for every time segment were used to train the model. The model would first encode the spectrogram and then detect inspiratory or expiratory sounds using the encoded image on an attention-based decoder. Physicians would be able to make a more precise diagnosis based on the more interpretable outputs with the assistance of the attention mechanism.The respiratory sounds used for training and testing were recorded from 22 participants using digital stethoscopes or anti-noising microphone sets. Experimental results showed a high 92.006% accuracy when applied 0.5 second time segments and ResNet101 as encoder. Consistent performance of the proposed method can be observed from ten-fold cross-validation experiments.
Homepage: https://www.selleckchem.com/products/Deforolimus.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.