Notes
Notes - notes.io |
Uncrewed aerial vehicles (UAVs) for last-mile deliveries will affect the energy productivity of delivery and require new methods to understand energy consumption and greenhouse gas (GHG) emissions. We combine empirical testing of 188 quadcopter flights across a range of speeds with a first-principles analysis to develop a usable energy model and a machine-learning algorithm to assess energy across takeoff, cruise, and landing. Our model shows that an electric quadcopter drone with a very small package (0.5 kg) would consume approximately 0.08 MJ/km and result in 70 g of CO2e per package in the United States. We compare drone delivery with other vehicles and show that energy per package delivered by drones (0.33 MJ/package) can be up to 94% lower than conventional transportation modes, with only electric cargo bicycles providing lower GHGs/package. Our open model and coefficients can assist stakeholders in understanding and improving the sustainability of small package delivery.An app-based educational outbreak simulator, Operation Outbreak (OO), seeks to engage and educate participants to better respond to outbreaks. Here, we examine the utility of OO for understanding epidemiological dynamics. The OO app enables experience-based learning about outbreaks, spreading a virtual pathogen via Bluetooth among participating smartphones. Deployed at many colleges and in other settings, OO collects anonymized spatiotemporal data, including the time and duration of the contacts among participants of the simulation. We report the distribution, timing, duration, and connectedness of student social contacts at two university deployments and uncover cryptic transmission pathways through individuals' second-degree contacts. We then construct epidemiological models based on the OO-generated contact networks to predict the transmission pathways of hypothetical pathogens with varying reproductive numbers. Finally, we demonstrate that the granularity of OO data enables institutions to mitigate outbreaks by proactively and strategically testing and/or vaccinating individuals based on individual social interaction levels.Single-cell technologies generate large, high-dimensional datasets encompassing a diversity of omics. Dimensionality reduction captures the structure and heterogeneity of the original dataset, creating low-dimensional visualizations that contribute to the human understanding of data. Existing algorithms are typically unsupervised, using measured features to generate manifolds, disregarding known biological labels such as cell type or experimental time point. We repurpose the classification algorithm, linear discriminant analysis (LDA), for supervised dimensionality reduction of single-cell data. LDA identifies linear combinations of predictors that optimally separate a priori classes, enabling the study of specific aspects of cellular heterogeneity. We implement feature selection by hybrid subset selection (HSS) and demonstrate that this computationally efficient approach generates non-stochastic, interpretable axes amenable to diverse biological processes such as differentiation over time and cell cycle. We benchmark HSS-LDA against several popular dimensionality-reduction algorithms and illustrate its utility and versatility for the exploration of single-cell mass cytometry, transcriptomics, and chromatin accessibility data.The All of Us Research Program seeks to engage at least one million diverse participants to advance precision medicine and improve human health. We describe here the cloud-based Researcher Workbench that uses a data passport model to democratize access to analytical tools and participant information including survey, physical measurement, and electronic health record (EHR) data. We also present validation study findings for several common complex diseases to demonstrate use of this novel platform in 315,000 participants, 78% of whom are from groups historically underrepresented in biomedical research, including 49% self-reporting non-White races. Replication findings include medication usage pattern differences by race in depression and type 2 diabetes, validation of known cancer associations with smoking, and calculation of cardiovascular risk scores by reported race effects. The cloud-based Researcher Workbench represents an important advance in enabling secure access for a broad range of researchers to this large resource and analytical tools.False assumptions that sex and gender are binary, static, and concordant are deeply embedded in the medical system. As machine learning researchers use medical data to build tools to solve novel problems, understanding how existing systems represent sex/gender incorrectly is necessary to avoid perpetuating harm. In this perspective, we identify and discuss three factors to consider when working with sex/gender in research "sex/gender slippage," the frequent substitution of sex and sex-related terms for gender and vice versa; "sex confusion," the fact that any given sex variable holds many different potential meanings; and "sex obsession," the idea that the relevant variable for most inquiries related to sex/gender is sex assigned at birth. We then explore how these phenomena show up in medical machine learning research using electronic health records, with a specific focus on HIV risk prediction. Finally, we offer recommendations about how machine learning researchers can engage more carefully with questions of sex/gender.In their recent perspective published in Patterns, Maggie Delano and Kendra Albert highlight the limitations of sex and gender data classification in health systems and show how this contributes to the marginalization of trans and non-binary individuals. They provide recommendations to improve incorporating gender data into healthcare algorithms. Here they discuss their collaboration and how it enabled this cross-disciplinary research.Amouzgar et al. present HSS-LDA, a supervised dimensionality reduction approach for single-cell data that outperforms existing unsupervised techniques. They couple hybrid subset selection to linear discriminant analysis and identify interpretable linear combinations of predictors that best separate predefined biological groups.A fundamental problem in science is uncovering the effective number of degrees of freedom in a complex system its dimensionality. A system's dimensionality depends on its spatiotemporal scale. Here, we introduce a scale-dependent generalization of a classic enumeration of latent variables, the participation ratio. We demonstrate how the scale-dependent participation ratio identifies the appropriate dimension at local, intermediate, and global scales in several systems such as the Lorenz attractor, hidden Markov models, and switching linear dynamical systems. We show analytically how, at different limiting scales, the scale-dependent participation ratio relates to well-established measures of dimensionality. This measure applied in neural population recordings across multiple brain areas and brain states shows fundamental trends in the dimensionality of neural activity-for example, in behaviorally engaged versus spontaneous states. Our novel method unifies widely used measures of dimensionality and applies broadly to multivariate data across several fields of science.Firearm possession rates across the United States are important for policy makers and the public alike, yet reliable data are notoriously hard to come by. In this issue of Patterns, Barak-Ventura et al. develop a model to estimate state-level firearm ownership and analyze the causal relationships among firearm possession, the occurrence of mass shootings, and media coverage.[This corrects the article DOI 10.1016/j.patter.2021.100340.].Brain tumor has the foremost distinguished etiology of high morality. Neoplasm, a categorization of brain tumors, is very operative in distinguishing and determining the tumor's exact location in the brain. Magnetic resonance imaging (MRI) is an efficient noninvasive technique for the anatomical examination of brain tumors. Growth tissues have a distinguishable look in MRI pictures in order that they are unit-wide used for brain tumor feature extraction. The existing research algorithms for brain tumors have some limitations such as different qualities, low sensitivity, and diagnosing the tumor at its stages. SAR439859 In this particular piece of research, an innovative method of optimization known as the procedure for lightning attachment algorithm (PLA) is used, and for the purpose of classification, a CNN model known as DenseNet-169 is applied. PLA was used in order to optimize the growth, and a network model known as the DenseNet-169 model was utilized in order to extract the various growth-optimization choices. First, the MR images of the brain were preprocessed to remove any outliers. Next, the Dense Net-169 CNN model was used to extract network choices from the MR images. In addition, it is used to execute the function of a classifier in order to identify the growth as either an aberrant growth or a traditional growth. In addition, the publicly benchmarked datasets that are widely utilized have validated the algorithmic rule that was granted. The planned system demonstrates the satisfactory accuracy in getting ready to on the dataset and outperforms many of the notable current techniques.
To access the incidence and predictors of Gleason grade group upgrading from cognitive MR-targeted fusion prostate biopsy to radical prostatectomy in a Chinese cohort.
We included 199 patients in our institution between January 2016 and June 2021. Multivariable logistic regression model and nomograms were utilized to analyze the collected data.
The concordance rate of biopsy Gleason grade group and radical prostatectomy was 50.3% (100 in 199). Upgrading occurred in 80 (40.2%) patients and 37 (68.5%) patients have an upgrading Gleason grade group when the biopsy Gleason grade group was 1. Multivariable logistic regression models were established to analyze the incidence and predictors of Gleason grade group upgrading from cognitive MR-targeted fusion prostate biopsy to radical prostatectomy. Biopsy Gleason grade group, prostate volume, and patient year were confirmed to be individual predictors of upgrading. Based on the logistic regression models, nomograms for predicting probability of prostate Gleason grade group upgrading were generated.
We established a logistic regression model to predict the accuracy of prostate biopsy GG and provide the probability of upgrading. Clinicians should be more cautious when deciding the treatment strategy especially for prostate cancer biopsy GG1 patients. Future studies should expand the sample size and include more variables to improve the accuracy of predicting upgrading and prostate cancer early screening program is urgently needed in our city in China.
We established a logistic regression model to predict the accuracy of prostate biopsy GG and provide the probability of upgrading. Clinicians should be more cautious when deciding the treatment strategy especially for prostate cancer biopsy GG1 patients. Future studies should expand the sample size and include more variables to improve the accuracy of predicting upgrading and prostate cancer early screening program is urgently needed in our city in China.
Read More: https://www.selleckchem.com/products/sar439859.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team