Notes
![]() ![]() Notes - notes.io |
Further, using genes that expressed inversely under heat vs. cold temperature conditions, we built a regulatory network between transcription factors (TF) such as HSFs, NAC, WRKYs, bHLHs or bZIPs and their target gene pairs and determined regulatory coordination in their expression under varying temperature conditions. Our work thus provides useful insights into temperature-responsive genes, particularly under elevated temperature conditions, and could serve as a resource of candidate genes associated with thermotolerance or downstream components of temperature sensors in rice.In the study, Methylated DNA immunoprecipitation sequencing, RNA sequencing, and whole-exome sequencing were employed to clinical small cell lung cancer (SCLC) patients. Then, we verified the therapeutic predictive effects of differentially methylated genes (DMGs) in 62 SCLC cell lines. Of 4552 DMGs between chemo-sensitive and chemo-insensitive group, coding genes constituted the largest percentage (85.08%), followed by lncRNAs (10.52%) and miRNAs (3.56%). Both two groups demonstrated two methylation peaks near transcription start site and transcription end site. Two lncRNA-miRNA-mRNA networks suggested the extensive genome connection between chemotherapy efficacy-related non-coding RNAs (ncRNAs) and mRNAs. Combing miRNAs and lncRNAs could effectively predict chemotherapy response in SCLC. In addition, we also verified the predictive values of mutated genes in SCLC cell lines. This study was the first to evaluate multiple drugs efficacy-related ncRNAs and mRNAs which were modified by methylation in SCLC. DMGs identified in our research might serve as promising therapeutic targets to reverse drugs-insensitivity by complex lncRNA-miRNA-mRNA mechanisms in SCLC.Individuals of African ancestry suffer disproportionally from higher incidence, aggressiveness, and mortality for particular cancers. This disparity likely results from an interplay among differences in multiple determinants of health, including differences in tumor biology. We used The Cancer Genome Atlas (TCGA) SpliceSeq and TCGA aggregate expression datasets and identified differential alternative RNA splicing and transcription events (ARS/T) in cancers between self-identified African American (AA) and White (W) patients. We found that retained intron events were enriched among race-related ARS/T. In addition, on average, 12% of the most highly ranked race-related ARS/T overlapped between any two analyzed cancers. Moreover, the genes undergoing race-related ARS/T functioned in cancer-promoting pathways, and a number of race-related ARS/T were associated with patient survival. We built a web-application, CanSplice, to mine genomic datasets by self-identified race. The race-related targets have the potential to aid in the development of new biomarkers and therapeutics to mitigate cancer disparity.23 invertase (PbrInvs) genes, including eight vacuolar invertases (PbrvacInvs), five cell wall invertases (PbrcwInvs) and 10 alkaline/neutral invertases (PbrA/N-Invs), were identified from P. bretschneideri Rehd. genome, with diverse chromosome locations, cis-acting elements, gene structures and motifs. Their expression profiles were tissue-specific, and postharvest light or temperature treatment would alter their expression profiles. During 'Dangshansuli' pear development, in association with visual/inner quality change was the alternations of invertase activity and the expression profiles of PbrInvs. In combination with results of subcellular sugar distribution as well as correlation analysis among sugar content, invertase activity and PbrInv mRNA abundance, PbrvacInv1 might be involved in sucrose decomposition during pear development. PbrvacInv1-GFP fusion protein mainly accumulated on the tonoplast (vacuolar membrane); meanwhile, transient overexpression of PbrvacInv1 in pear fruit would upregulate vacInv activity, causing higher fructose and lower sucrose when compared with that of the control. Furthermore, invertase inhibitor 5 (PbrInvInh5) could interact with PbrvacInv1.To win the battle against resistant, pathogenic bacteria, novel classes of anti-infectives and targets are urgently needed. Bacterial uptake, distribution, metabolic and efflux pathways of antibiotics in Gram-negative bacteria determine what we here refer to as bacterial bioavailability. Understanding these mechanisms from a chemical perspective is essential for anti-infective activity and hence, drug discovery as well as drug delivery. A systematic and critical discussion of in bacterio, in vitro and in silico assays reveals that a sufficiently accurate holistic approach is still missing. We expect new findings based on Gram-negative bacterial bioavailability to guide future anti-infective research.A dense desmoplastic stroma formed by abundant extracellular matrix and stromal cells, including cancer-associated fibroblasts (CAFs) and immune cells, is a feature of pancreatic ductal adenocarcinoma (PDAC), one of the most lethal cancer types. As the dominant cellular component of the PDAC stroma, CAFs orchestrate intensive and biologically diverse crosstalk with pancreatic cancer cells and immune cells and contribute to a unique PDAC tumor microenvironment promoting cancer proliferation, metastasis, and resistance against both chemo- and immunotherapies. Therefore, CAFs and CAF-related mechanisms have emerged as promising targets for PDAC therapy. However, several clinical setbacks and accumulating knowledge of the PDAC stroma have revealed the heterogeneity and multifaceted biological roles of CAFs, and concerns regarding "what to deliver" and "how to deliver" have arisen when designing CAF-targeted drug delivery systems to specifically inhibit tumor-supporting CAFs without impairing tumor-restricting CAFs. In this review, we will discuss the complexity of CAFs in the PDAC stroma as well as the potential opportunities and common misconceptions regarding drug delivery efforts targeting PDAC CAFs.Despite the boom in biologics over the past decade, the intrinsic instability of these large molecules poses significant challenges to formulation development. Almost half of all pharmaceutical protein products are formulated in the solid form to preserve protein native structure and extend product shelf-life. In this review, both traditional and emerging drying techniques for producing protein solids will be discussed. During the drying process, various stresses can impact the stability of protein solids. However, understanding the impact of stress on protein product quality can be challenging due to the lack of reliable characterization techniques for biological solids. Both conventional and advanced characterization techniques are discussed including differential scanning calorimetry (DSC), solid-state Fourier transform infrared spectrometry (ssFTIR), solid-state fluorescence spectrometry, solid-state hydrogen deuterium exchange (ssHDX), solid-state nuclear magnetic resonance (ssNMR) and solid-state photolytic labeling (ssPL). Advanced characterization tools may offer mechanistic investigations into local structural changes and interactions at higher resolutions. The continuous exploration of new drying techniques, as well as a better understanding of the effects caused by different drying techniques in solid state, would advance the formulation development of biological products with superior quality.Preclinical studies in rodent models have been a pivotal role in human clinical research, but many of them fail in the translational process. Spontaneous tumors in pet dogs have the potential to bridge the gap between preclinical models and human clinical trials. Their natural occurrence in an immunocompetent system overcome the limitations of preclinical rodent models. Due to its reasonable cellular, molecular, and genetic homology to humans, the pet dog represents a valuable model to accelerate the translation of preclinical studies to clinical trials in humans, actually with benefits for both species. Moreover, their unique genetic features of breeding and breed-related mutations have contributed to assess and optimize therapeutics in individuals with different genetic backgrounds. This review aims to outline four main immunotherapy approaches - cancer vaccines, adaptive T-cell transfer, antibodies, and cytokines -, under research in veterinary medicine and how they can serve the clinical application crosstalk with humans.Since additive manufacturing of pharmaceuticals has been introduced as viable method to produce individualized drug delivery systems with complex geometries and release profiles, semi-solid micro-extrusion has shown to be uniquely beneficial. Easy incorporation of actives, room-temperature processability and avoidance of cross-contamination by using disposables are some of the advantages that led many researchers to focus their work on this technology in the last few years. First acceptability and in-vivo studies have brought it closer towards implementation in decentralized settings. This review covers recently established process models in light of viscosity and printability discussions to help develop high quality printed medicines. selleck screening library Quality defining formulation and process parameters to characterize the various developed dosage forms are presented before critically discussing the role of semi-solid micro-extrusion in the future of personalized drug delivery systems. Remaining challenges regarding regulatory guidance and quality assurance that pose the last hurdle for large scale and commercial manufacturing are addressed.Apart from its clinical use in imaging, ultrasound has been thoroughly investigated as a tool to enhance drug delivery in a wide variety of applications. Therapeutic ultrasound, as such or combined with cavitating nuclei or microbubbles, has been explored to cross or permeabilize different biological barriers. This ability to access otherwise impermeable tissues in the body makes the combination of ultrasound and therapeutics very appealing to enhance drug delivery in situ. This review gives an overview of the most important biological barriers that can be tackled using ultrasound and aims to provide insight on how ultrasound has shown to improve accessibility as well as the biggest hurdles. In addition, we discuss the clinical applicability of therapeutic ultrasound with respect to the main challenges that must be addressed to enable the further progression of therapeutic ultrasound towards an effective, safe and easy-to-use treatment tailored for drug delivery in patients.Therapeutic biologics such as genes, peptides, proteins, virus and cells provide clinical benefits and are becoming increasingly important tools in respiratory medicine. Pulmonary delivery of therapeutic biologics enables the potential for safe and effective treatment option for respiratory diseases due to high bioavailability while minimizing absorption into the systemic circulation, reducing off-target toxicity to other organs. Development of inhalable powder formulation requires stabilization of complex biological materials, and each type of biologics may present unique challenges and require different formulation strategy combined with manufacture process to ensure biological and physical stabilities during production and over shelf-life. This review examines key formulation strategies for stabilizing proteins, nucleic acids, virus (bacteriophages) and bacterial cells in inhalable powders. It also covers characterization methods used to assess physicochemical properties and aerosol performance of the powders, biological activity and structural integrity of the biologics, and chemical analysis at the nanoscale.
Homepage: https://www.selleckchem.com/
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team