Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Although it has been exploited since the late 1900s to study hybrid perovskite materials, nuclear magnetic resonance (NMR) spectroscopy has only recently received extraordinary research attention in this field. This very powerful technique allows the study of the physico-chemical and structural properties of molecules by observing the quantum mechanical magnetic properties of an atomic nucleus, in solution as well as in solid state. Its versatility makes it a promising technique either for the atomic and molecular characterization of perovskite precursors in colloidal solution or for the study of the geometry and phase transitions of the obtained perovskite crystals, commonly used as a reference material compared with thin films prepared for applications in optoelectronic devices. This review will explore beyond the current focus on the stability of perovskites (3D in bulk and nanocrystals) investigated via NMR spectroscopy, in order to highlight the chemical flexibility of perovskites and the role of interactions for thermodynamic and moisture stabilization. The exceptional potential of the vast NMR tool set in perovskite structural characterization will be discussed, aimed at choosing the most stable material for optoelectronic applications. The concept of a double-sided characterization in solution and in solid state, in which the organic and inorganic structural components provide unique interactions with each other and with the external components (solvents, additives, etc.), for material solutions processed in thin films, denotes a significant contemporary target.The present work reports on the detailed electro-thermal evaluation of a highly water dispersible, functionalized reduced graphene oxide (f-rGO) using inkjet printing technology. Aiming in the development of printed electronic devices, a flexible polyimide substrate was used for the structures' formation. A direct comparison between the f-rGO ink dispersion and a commercial graphene inkjet ink is also presented. Extensive droplet formation analysis was performed in order to evaluate the repeatable and reliable jetting from an inkjet printer under study. Electrical characterization was conducted and the electrical characteristics were assessed under different temperatures, showing that the water dispersion of the f-rGO is an excellent candidate for application in printed thermal sensors and microheaters. It was observed that the proposed f-rGO ink presents a tenfold increased temperature coefficient of resistance compared to the commercial graphene ink (G). A successful direct interconnection implementation of both materials with commercial Ag-nanoparticle ink lines was also demonstrated, thus allowing the efficient electrical interfacing of the printed structures. Chidamide mouse The investigated ink can be complementary utilized for developing fully printed devices with various characteristics, all on flexible substrates with cost-effective, few-step processes.The multifocal metalens with an adjustable intensity has great potential in many applications such as the multi-imaging system, but it is less studied. In this paper, by combining the electro-optic material barium titanate (BTO) with the Pancharatnam-Berry phase, an electrically modulated bifocal metalens in a visible light band is innovatively proposed. Due to the electro-optic effect, we can control the refractive index of the BTO nanofins to vary between 2.4 and 3.07 by applying different voltages (0-60 V). Thus, the method of modulating the intensity ratio of the two focal points is applying an electric field. It is different from using phase change materials or changing the ellipticity of incident light, the strategies proposed in previous studies. Moreover, when the applied voltage is 0 V or 60 V, the bifocal metalens becomes a single focal metalens with different focal lengths, and the full width at half maximum of each focal point is close to the diffraction limit. It has great potential in applications of optical storage, communication and imaging systems.Poly(3,4-ethylenedioxythiophene)-Nafion (PEDOTNafion) is emerging as a promising alternative to PEDOT-polystyrene sulfonate (PEDOTPSS) in organic bioelectronics. However, the biocompatibility of PEDOTNafion has not been investigated to date, limiting its deployment toward in vivo applications such as neural recording and stimulation. In the present study, the in vitro cytotoxicity of PEDOTNafion coatings, obtained by a water-based PEDOTNafion formulation, was evaluated using a primary cell culture of rat fibroblasts. The surface of PEDOTNafion coating was characterized by Atomic Force Microscopy (AFM) and water contact angle measurements. Fibroblasts adhesion and morphology was investigated by scanning electron microscopy (SEM) and AFM measurements. Cell proliferation was assessed by fluorescence microscopy, while cell viability was quantified by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT), lactate dehydrogenase (LDH) and neutral red assays. The results showed that PEDOTNafion coatings obtained by the water dispersion were not cytotoxic, making the latter a reliable alternative to PEDOTPSS dispersion, especially in terms of chronic in vivo applications.Photocatalysis and membrane technology in a single unit is an ideal strategy for the development of wastewater treatment systems. In this work, novel GO (x wt%)/TiO2-CA hybrid membranes have been synthesized via a facile non-solvent induced phase inversion technique. The strategy aimed to address the following dilemmas (1) Effective utilization of visible light and minimize e-/h+ recombination; (2) Enhanced separation capability and superior anti-fouling and self-cleaning ability. The experimental results reveal that the integration of nano-composite (GO/TiO2) boosts the membrane properties when compared to pristine CA and single photocatalyst employed membrane (GO-CA and TiO2-CA). The effect of GO content on the properties of the photocatalytic membrane has been determined by utilizing three different ratios of GO, viz. 0.5 wt%, 1 wt%, and 2 wt% designated as NC(1)-CA, NC(2)-CA, and NC(3)-CA, respectively. Amongst them, NC(3)-CA membrane showed state-of-the-art performance with an elevated photocatalytic response (four times higher than pristine CA membrane) toward methyl orange. Moreover, the water flux of NC(3)-CA membrane is 613 L/m2h, approximately three times higher than bare CA membrane (297 L/m2h), while keeping the MO rejection high (96.6%). Besides, fouling experiments presented the lowest total and fouling resistance ratios and a higher flux recovery ratio (91.78%) for the NC(3)-CA membrane, which endows the membrane with higher anti-fouling and self-cleaning properties. Thus, NC(3)-CA membrane outperforms the other as synthesized membranes in terms of separation efficiency, visible light photo-degradation of pollutant, anti-fouling and self-cleaning ability. Therefore, NC(3)-CA membrane is considered as the next generation membrane for exhibiting great potential for the wastewater treatment applications.The yield and morphology (length, width, thickness) of stoichiometric Bi2Se3 nanoribbons grown by physical vapor deposition is studied as a function of the diameters and areal number density of the Au catalyst nanoparticles of mean diameters 8-150 nm formed by dewetting Au layers of thicknesses 1.5-16 nm. The highest yield of the Bi2Se3 nanoribbons is reached when synthesized on dewetted 3 nm thick Au layer (mean diameter of Au nanoparticles ~10 nm) and exceeds the nanoribbon yield obtained in catalyst-free synthesis by almost 50 times. The mean lengths and thicknesses of the Bi2Se3 nanoribbons are directly proportional to the mean diameters of Au catalyst nanoparticles. In contrast, the mean widths of the Bi2Se3 nanoribbons do not show a direct correlation with the Au nanoparticle size as they depend on the contribution ratio of two main growth mechanisms-catalyst-free and vapor-liquid-solid deposition. The Bi2Se3 nanoribbon growth mechanisms in relation to the Au catalyst nanoparticle size and areal number density are discussed. Determined charge transport characteristics confirm the high quality of the synthesized Bi2Se3 nanoribbons, which, together with the high yield and tunable morphology, makes these suitable for application in a variety of nanoscale devices.Global warming is pushing the world to seek to green energy sources and hydrogen is a good candidate to substitute fossil fuels in the short term. In future, it is expected that production of hydrogen will be carried out through photo-electrocatalysis. In this way, suitable electrodes that acts as photoanode absorbing the incident light are needed to catalyse water splitting reaction. Hematite (α-Fe2O3) is one of the most attractive semiconductors for this purpose since it is a low-cost material and it has a suitable band gap of 2.1 eV, which allows the absorption of the visible region. Although, hematite has drawbacks such as low carrier mobility and short holes diffusion lengths, that here it has been tried to overcome by nanoengineering the material, and by using a semiconductor as a scaffold that enhances charge carrier separation processes in the electrode. In this work, we fabricate ultrathin quasi transparent electrodes composed by highly ordered and self-standing hematite nanopillars of a few tens of nanometers length on FTO and TiO2 supports. Photoanodes were fabricated utilizing electron beam evaporation technique and anodized aluminum oxide templates with well-defined pores diameters. Thus, the activity of the compact layer hematite photoanode is compared with the photoanodes fabricated with nanopillars of controllable diameters (i.e., 90, 260 and 400 nm) to study their influence on charge separation processes. Results indicated that optimal α-Fe2O3 photoanodes performance are obtained when nanopillars reach hundreds of nanometers in diameter, achieving for photoanodes with 400 nm nanopillars onto TiO2 supports the highest photocurrent density values.Spectrally selective absorbers have received considerable interest due to their applications in thermophotovoltaic devices and as solar absorbers. Due to extreme operating conditions in these applications, such as high temperatures, thermo-mechanically stable and broadband spectrally selective absorbers are of interest. This paper demonstrates anisotropic random rough surfaces that provide broadband spectrally selective absorption for the thermo-mechanically stable Tungsten surfaces. Anisotropic random rough surface has different correlation lengths in the x- and y-directions, which means their topography parameters have directional dependence. In particular, we demonstrate that spectral absorptance of Tungsten random rough surfaces at visible (VIS) and near-infrared (NIR) spectral regions are sensitive to correlation length and RMS height variations. Our results indicate that by optimizing random rough surface parameters, absorption values exceeding 95% can be obtained. Moreover, our results indicate that anisotropic random rough surfaces broaden the bandwidth of the high absorption region. It is shown that in VIS and NIR regions, the absorption enhancements of up to 47% and 52% are achieved for the isotropic and anisotropic rough surfaces, respectively.
Here's my website: https://www.selleckchem.com/products/tucidinostat-chidamide.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team