Notes
Notes - notes.io |
Findings stand to inform research on mechanisms underlying brief intervention effects, and research that seeks to identify treatment targets.Powered air-purifying respirators (PAPRs) are worn to protect workers from hazardous respiratory exposures in a wide range of workplaces, including healthcare. However, PAPRs may diminish the ability of wearers to correctly hear words spoken by others, potentially interfering with safe performance of healthcare duties. Accordingly, the impact of PAPRs during healthcare use on speech intelligibility (SI) and consequently on user safety, usability, and patient care is not well studied. The objectives of this study were to (1) determine a listener's ability to comprehend single-syllable words spoken by a PAPR wearer; (2) determine a PAPR wearer's ability to intelligibly hear and identify single-syllable words spoken by a PAPR wearer; (3) to assess the variability between speakers, listeners, and PAPR models; (4) to investigate the effects of PAPR design features on SI; and (5) inform a SI requirement for certifying future PAPRs for use in healthcare. This study utilized a Modified Rhyme Test to assess SI for PAPbility.Scene-selective regions of the human brain form allocentric representations of locations in our environment. These representations are independent of heading direction and allow us to know where we are regardless of our direction of travel. However, we know little about how these location-based representations are formed. Using fMRI representational similarity analysis and linear mixed models, we tracked the emergence of location-based representations in scene-selective brain regions. We estimated patterns of activity for two distinct scenes, taken before and after participants learnt they were from the same location. During a learning phase, we presented participants with two types of panoramic videos (1) an overlap video condition displaying two distinct scenes (0° and 180°) from the same location and (2) a no-overlap video displaying two distinct scenes from different locations (which served as a control condition). In the parahippocampal cortex (PHC) and retrosplenial cortex (RSC), representations of scenes from the same location became more similar to each other only after they had been shown in the overlap condition, suggesting the emergence of viewpoint-independent location-based representations. Whereas these representations emerged in the PHC regardless of task performance, RSC representations only emerged for locations where participants could behaviorally identify the two scenes as belonging to the same location. The results suggest that we can track the emergence of location-based representations in the PHC and RSC in a single fMRI experiment. Further, they support computational models that propose the RSC plays a key role in transforming viewpoint-independent representations into behaviorally relevant representations of specific viewpoints.Recent studies of creative cognition have revealed interactions between functional brain networks involved in the generation of novel ideas; however, the neural basis of creativity is highly complex and presents a great challenge in the field of cognitive neuroscience, partly because of ambiguity around how to assess creativity. We applied a novel computational method of verbal creativity assessment-semantic distance-and performed weighted degree functional connectivity analyses to explore how individual differences in assembly of resting-state networks are associated with this objective creativity assessment. To measure creative performance, a sample of healthy adults (n = 175) completed a battery of divergent thinking (DT) tasks, in which they were asked to think of unusual uses for everyday objects. Computational semantic models were applied to calculate the semantic distance between objects and responses to obtain an objective measure of DT performance. All participants underwent resting-state imaging, from which we computed voxel-wise connectivity matrices between all gray matter voxels. A linear regression analysis was applied between DT and weighted degree of the connectivity matrices. Our analysis revealed a significant connectivity decrease in the visual-temporal and parietal regions, in relation to increased levels of DT. Link-level analyses showed higher local connectivity within visual regions was associated with lower DT, whereas projections from the precuneus to the right inferior occipital and temporal cortex were positively associated with DT. Our results demonstrate differential patterns of resting-state connectivity associated with individual creative thinking ability, extending past work using a new application to automatically assess creativity via semantic distance.Semantic concepts relate to each other to varying degrees to form a network of zero-order relations, and these zero-order relations serve as input into networks of general relation types as well as higher order relations. Previous work has studied the neural mapping of semantic concepts across domains, although much work remains to be done to understand how the localization and structure of those architectures differ depending on various individual differences in attentional bias toward different content presentation formats. Using an item-wise model of semantic distance of zero-order relations (Word2vec) between stimuli (presented both in word and picture forms), we used representational similarity analysis to identify individual differences in the neural localization of semantic concepts and how those localization differences can be predicted by individual variance in the degree to which individuals attend to word information instead of pictures. Importantly, there were no reliable representations of this zero-order semantic relational network when looking at the full group, and it was only through considering individual differences that a stable localization difference became evident. These results indicate that individual differences in the degree to which a person habitually attends to word information instead of picture information substantially affects the neural localization of zero-order semantic representations.Face inversion effects occur for both behavioral and electrophysiological responses when people view faces. check details In EEG, inverted faces are often reported to evoke an enhanced amplitude and delayed latency of the N170 ERP. This response has been attributed to the indexing of specialized face processing mechanisms within the brain. However, inspection of the literature revealed that, although N170 is consistently delayed to a variety of face representations, only photographed faces invoke enhanced N170 amplitudes upon inversion. This suggests that the increased N170 amplitudes to inverted faces may have other origins than the inversion of the face's structure. We hypothesize that the unique N170 amplitude response to inverted photographed faces stems from multiple expectation violations, over and above structural inversion. For instance, rotating an image of a face upside-down not only violates the expectation that faces appear upright but also lifelong priors about illumination and gravity. We recorded EEG while participants viewed face stimuli (upright vs. inverted), where the faces were illuminated from above versus below, and where the models were photographed upright versus hanging upside-down. The N170 amplitudes were found to be modulated by a complex interaction between orientation, lighting, and gravity factors, with the amplitudes largest when faces consistently violated all three expectations. These results confirm our hypothesis that face inversion effects on N170 amplitudes are driven by a violation of the viewer's expectations across several parameters that characterize faces, rather than a disruption in the configurational disposition of its features.Research in computational psychiatry has sought to understand the basis of compulsive behavior by relating it to basic psychological and neural mechanisms specifically, goal-directed versus habitual control. These psychological categories have been further identified with formal computational algorithms, model-based and model-free learning, which helps to provide quantitative tools to distinguish them. Computational psychiatry may be particularly useful for examining phenomena in individuals with anorexia nervosa (AN), whose self-starvation appears both excessively goal directed and habitual. However, these laboratory-based studies have not aimed to examine complex behavior, as seen outside the laboratory, in contexts that extend beyond monetary rewards. We therefore assessed (1) whether behavior in AN was characterized by enhanced or diminished model-based behavior, (2) the domain specificity of any abnormalities by comparing learning in a food-specific (i.e., illness-relevant) context as well as in a monetary context, and (3) whether impairments were secondary to starvation by comparing learning before and after initial treatment. Across all conditions, individuals with AN, relative to healthy controls, showed an impairment in model-based, but not model-free, learning, suggesting a general and persistent contribution of habitual over goal-directed control, across domains and time points. Thus, eating behavior in individuals with AN that appears very goal-directed may be under more habitual than goal-directed control, and this is not remediated by achieving weight restoration.A periodically reversing optic flow animation, experienced while standing, induces an involuntary sway termed visually induced postural sway (VIPS). Interestingly, VIPS is suppressed during light finger touch to a stationary object. Here, we explored whether VIPS is mediated by parietal field activity in the dorsal visual stream as well as by activity in early visual areas, as has been suggested. We performed a mobile brain/body imaging study using high-density electroencephalographic recording from human participants (11 men and 3 women) standing during exposure to periodically reversing optic flow with and without light finger touch to a stable surface. We also performed recording their visuo-postural tracking movements as a typical visually guided movement to explore differences of cortical process of VIPS from the voluntary visuomotor process involving the dorsal stream. In the visuo-postural tracking condition, the participants moved their center of pressure in time with a slowly oscillating (expanding, shrinking) target rectangle. Source-resolved results showed that alpha band (8-13 Hz) activity in the medial and right occipital cortex during VIPS was modulated by the direction and velocity of optic flow and increased significantly during light finger touch. However, source-resolved potentials from the parietal association cortex showed no such modulation. During voluntary postural sway with feedback (but no visual flow) in which the dorsal stream is involved, sensorimotor areas produced more theta band (4-7 Hz) and less beta band (14-35 Hz) activity than during involuntary VIPS. These results suggest that VIPS involves cortical field dynamic changes in the early visual cortex rather than in the posterior parietal cortex of the visual dorsal stream.
Homepage: https://www.selleckchem.com/products/deferiprone.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team