Notes
Notes - notes.io |
Stingless bees (Meliponini) are a monophyletic group of eusocial insects inhabiting tropical and subtropical regions. These insects represent the most abundant and diversified group of corbiculate bees. Meliponini mostly rely on fermentation by symbiont microbes to preserve honey and transform pollen in stored food. Bee nests harbor diverse microbiota that includes bacteria, yeasts, filamentous fungi, and viruses. These microorganisms may interact with the bees through symbiotic relationships, or they may act as food for the insects, or produce biomolecules that aid in the biotransformation of bee products, such as honey and bee bread. Certain microbial species can also produce antimicrobial compounds that inhibit opportunistic bee pathogens.Microbial pretreatments have been identified as a compatible and sustainable process with anaerobic digestion compared to energy-intensive physicochemical pretreatments. In this study, barley straw and hay co-substrate was pretreated with a microaerobic barley straw-adapted microbial (BSAM) consortium prior to anaerobic digestion. The improved digestibility was investigated through 16S rRNA gene sequencing, microbial counts and CN ratios. BSAM pretreatment resulted in 15.2 L kg-1 TS of methane yield after 35 days, almost 40 times more than the control. The methane content in total biogas produced were 58% (v/v) and 10% (v/v) in BSAM and control, respectively. This research demonstrated that BSAM-based pretreatment significantly increased the digestibility and surface area of the lignocellulosic material and considerably enhanced biomethanation. This study generates new potential bio-research opportunities in the emerging field of lignocellulosic anaerobic digestion-biorefineries.Toxoplasma gondii, an obligate intracellular protozoan parasite, can establish a chronic infection in the brain by forming tissue cysts. This chronic infection is widespread in humans worldwide including developed countries, with up to one third of the population being estimated to be infected with this parasite. Diagnosis of this chronic infection is usually conducted by serological detection of IgG antibodies against this parasite. Since infected individuals remain positive for these antibodies for years, it has generally been considered that this infection is a lifelong infection. It is also often considered that this chronic infection is "latent" or "quiescent". However, recent discovery of the capability of perforin-dependent, CD8+ T cell-mediated immune responses to eliminate T. gondii cysts in collaboration with phagocytes illustrated dynamic interplays between T. gondii cysts and host immune system during this chronic infection. PKC-theta inhibitor chemical structure Importantly, the cytotoxic T cell-mediated protective immunity is able to remove mature cysts of the parasite. It is now clear that chronic T. gondii infection is not "latent" or "quiescent". Elucidating the mechanisms of the dynamic host-pathogen interactions between the anti-cyst protective immunity and T. gondii cysts and identifying the pathway to appropriately activate anti-cyst CD8+ cytotoxic T cells would be able to open a door for eradicating T. gondii cysts and curing chronic infection with this parasite.Ruminococcus gnavus is a Gram-positive anaerobe and normal gut commensal in the human host. There have been a small number of reported cases of infections attributed to R. gnavus, and no cases of urogenital infections have previously been published. We describe here a case of bilateral tubo-ovarian abscesses (TOAs) which cultured a pure growth of R. gnavus in a young female with concurrent deep infiltrating endometriosis and evidence of pelvic inflammatory disease. This case provides an insight into the behaviour of R. gnavus as a coloniser of the human host and provides further incentive to investigate its potentially pathogenic role in inflammatory conditions such as pelvic inflammatory disease.Members of Dysgonomonas are Gram-stain-negative, non-motile, facultatively anaerobic coccobacilli originally described in relation to their isolation from stool and wounds of human patients (CDC group DF-3). More recently, Dysgonomonas have been found to be widely distributed in terrestrial environments and are particularly enriched in insect systems. Their prevalence in xylophagous insects such as termites and wood-feeding cockroaches, as well as in soil-fed microbial fuel cells, elicit interest in lignocellulose degradation and biofuel production, respectively. Their occurrence in mosquito and fruit fly have implications relating to symbiosis, host immunology and developmental biology. Additionally, their presence in termite, mosquito and nematode present novel opportunities for pest and vector control. Currently, the absolute growth requirements of Dysgonomonas are unknown, and they are commonly cultured under anaerobic conditions on complex media containing blood, peptones, tryptones, and yeast, plant or meat extracts. Restrictive and undefined culturing conditions preclude physiological and genetic studies, and thus further understanding of their metabolic potential. Here we describe the requirements for growth of termite-derived Dysgonomonas isolates and create parallel complex, defined and minimal media that permit vigorous and reliable aerobic growth. Furthermore, we show that these media can be used to easily enrich for Dysgonomonas isolates from densely-colonized and microbially-diverse environmental samples.Titanium implants have shown considerable success in terms of achieving quick and long-lasting stability in bone through the process of osseointegration. Further work aims to improve implant success rates by modifying implant design on the nano-, micro-, and macro- scales with the goal of achieving higher levels of bone anchorage more quickly. However, the most frequently used methods of analysis do not investigate bone anchorage as a whole but as a series of discrete points, potentially missing relevant insight which could inform the effects of topography on these 3 scale ranges. Herein we utilize an asymptotic curve fitting method to obtain a biologically relevant description of reverse torque data and compare the anchorage of 12 different implant groups. Implant surface topography had a significant effect on the rate and degree of anchorage achieved during the initial bone formation period of osseointegration but was not found to influence the relative change in anchorage during bony remodeling. Threaded implants significantly decreased the time required to reach peak anchorage compared to non-threaded implants and implants with micro-topographically complex surfaces required greater torque to be removed than implants without such features. Nanotopography increased overall anchorage and decreased the time required to reach peak anchorage but to a lesser degree than microtopography or macrogeometry respectively. The curve fitting method utilized in the present study allows for a more integrated analysis of bone anchorage and permits investigation of osseointegration with respect to time, which may lead to a more targeted approach to implant design.The cory catfishes (Callichthyidae) are small, South American armored catfishes with a series of dermal scutes that run the length of the fish from posterior to the parieto-supraoccipital down to the caudal peduncle. In this study, we explore the anatomy and functional performance of the armored scutes in the three-striped cory catfish, Corydoras trilineatus. The lateral surface has a dorsal and a ventral row of scutes that interact at the horizontal septum. The scutes have little overlap with sequential posterior scutes (~33% overlap) and a deep ridge in the internal surface that connects to the underlying soft tissue. The internal surface of C. trilineatus scutes is stiffer than the external surface, contrary to the findings in a related species of cory catfish, C. aeneus, which documented a hypermineralized, enamel-like, non-collagenous, hyaloine layer along the external surface of the scute. Clearing and staining of C. trilineatus scutes revealed that the scutes have highly mineralized (~50% mineralization) regions embedded in between areas of low mineralization along the posterior margin. Puncture tests showed that posterior scutes were weaker than both anterior and middle scutes, and scutes attached to the body required 50% more energy to puncture than isolated scutes. Corydoras trilineatus has the strongest armor in areas critical for protecting vital organs and the external armored scute receives synergistic benefits from interactions to the soft underlying tissue, which combine to provide a tough protective armor that still allows for flexible mobility.Development of multifunctional tube-filling materials is required to improve the performances of the existing nerve guidance conduits (NGCs) in the repair of long-gap peripheral nerve (PN) injuries. In this study, composite nanofiber yarns (NYs) based on poly(p-dioxanone) (PPDO) biopolymer and different concentrations of carbon nanotubes (CNTs) were manufactured by utilizing a modified electrospinning apparatus. We confirmed the successful incorporation of CNTs into the PPDO nanofibers of as-fabricated composite NYs. The PPDO/CNT NYs exhibited similar morphology and structure in comparison with pure PPDO NYs. However, the PPDO/CNT NYs showed obviously enhanced mechanical properties and electrical conductivity compared to PPDO NYs. The biological tests revealed that the addition of CNTs had no negative effects on the cell growth, and proliferation of rabbit Schwann cells (rSCs), but it better maintained the phenotype of rSCs. We also demonstrated that the electrical stimulation (ES) significantly enhanced the differentiation capability of human adipose-derived mesenchymal stem cells (hADMSCs) into SC-like cells (SCLCs) on the PPDO/CNT NYs. More importantly, a unique combination of ES and chemical induction was found to further enhance the maturation of hADMSC-SCLCs on the PPDO/CNT NYs by notably upregulating the expression levels of SC myelination-associated gene markers and increasing the growth factor secretion. Overall, this study showed that our electrically conductive PPDO/CNT composite NYs could provide a beneficial microenvironment for various cell activities, making them an attractive candidate as NGC-infilling substrates for PN regeneration applications.Modular tissue engineering is a promising biofabrication strategy to create engineered bone grafts in a bottom-up manner, in which cell-laden micro-modules are prepared as basic building blocks to assemble macroscopic tissues via different integrating mechanisms. In this study, we prepared collagen microbeads loaded with human bone marrow derived mesenchymal stem cells (BMSCs) using a microfluidic approach. The cell-laden microbeads were characterized for size change, cell activity, osteogenesis, as well as their self-assembly properties to generate centimeter-sized constructs. Moreover, using the cell-laden beads as a supporting medium, induced pluripotent stem cell-derived endothelial cells (iPSC-EC) were patterned inside bead aggregates through extrusion-based 3D printing. This fabrication approach that combines modular tissue engineering and supports 3D printing has the potential to create 3D engineered bone grafts with a pre-existing, customized vasculature.
My Website: https://www.selleckchem.com/products/pkc-theta-inhibitor.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team