Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Benefiting from their excellent optical absorption and electron transfer properties, manganese dioxide nanomaterials have been widely applied for fluorescence-based nanosensors. In this work, graphene quantum dots (GQDs) wrapped square-plate-like MnO2 nanocomposite was synthesized from potassium permanganate via an in situ redox procedure under ultrasonication with poly(allylamine hydrochloride) (PAH) being involved. Through an effective fluorescence resonance energy transfer (FRET) process and inner filter effect (IFE) between GQDs and MnO2, the fluorescence of GQDs was quenched. Furthermore, the introduction of glutathione (GSH) decomposed MnO2 and caused fluorescence recovery of GQDs. Therefore, a MnO2 mediated nanosensor was established for fluorescent turn-on sensing of GSH. A satisfactory linear range was found to be 0.07-70 μM and the detection limit was as low as 48 nM. Besides, the fluorescent recognition of cancer cells using GQDs-MnO2 nanocomposite was achieved because of the obviously higher GSH content in cancer microenvironment than normal cells. This nanosensor was constructed directly in GQDs solution in the presence of PAH without the complicated modifications or connections, making it a facile and novel nanosensor for GSH.Cis-diol compounds are class of biomolecules including nucleosides, glycoproteins, saccharides, and nucleotides, which play vital roles in various biological processes. Due to low abundances of these species in the complex biological samples, their identification and analysis is difficult. Boronate affinity materials are commonly used for the isolation and enrichment of cis-diol compounds, due to their unique, facile and selective enrichment mechanism. In this study we report a selective approach to extract nucleosides, glycopeptides and glycoproteins using boronic acid functionalized GMA-MAA-DVB polymer. This novel polymer, reported for the first time in proteomics, have high BET surface area (132.8447 m2 g-1) which contribute to efficient enrichment and average pore size (20.3449 nm) to facilitates the nano confinement effect for strong interactions. Hydrophilic character of methacrylic acid and diethylenetriamine, along with inherent affinity of boronic acid for glycosylated biomolecules result in selectivity up to 1500 for peptides and 11000 for glycoprotein. Binding constant for cis-diol compounds are in the range of 10-4 to 10-6 M and theoretical binding capacity up to 85 mg g-1 for HRP and 180 mg g-1 for IgG, respectively. Furthermore, boronic acid functionalized polymer (BFP) enrich glycoproteins and glycopeptides in range of 1 pg mL-1 and 0.04 ng mL-1 with S/N ≥ 3. Finally, material is applied to enrich the glycoproteins from healthy human saliva sample and six glycoproteins are identified.Headspace solid-phase microextraction (HS-SPME) of low volatile analytes from complex aqueous samples can be substantially facilitated by elevating the temperature of the samples. However, many SPME coatings prepared from novel sorptive materials may suffer from low stabilities in hot water steam. Herein, a superhydrophobic metal-organic framework (MOF) derived from decorating the metal-oxo nodes of the amino-functionalized UiO-66(Zr) with phenylsilane was prepared and successfully developed into a novel SPME fiber coating. The highest extraction efficiencies towards the semi-volatile ultraviolet (UV) filters were achieved when the aqueous samples were heated up to 100 °C. It was notable that the lab-made coating exhibited extraordinary stability towards hot water steam, probably because the hydrophobic groups capped on the MOF prevented water molecules from entering and deconstructing its lattice. Even after being treated with water steam under 100 °C for 21 h, the extraction performance of the coating remained unchanged, and the crystal structure of the MOF maintained. Furthermore, a negligible matrix effect was observed even in the samples containing humic acid. Under the optimal extraction and thermal desorption conditions, a method for determining UV filters in aqueous samples was established, which possessed low detection limits (0.6-2.1 ng L-1), wide linear ranges (10-50000 ng L-1), good inter-fiber reproducibility (2.3-6.0%, n = 6), and satisfying intra-fiber repeatability (1.8-5.8%, n = 3). The method was successfully applied in quantifying UV filters in environmental water samples. In addition, the lab-made NH2-UiO-66(Zr)-shp-coated fiber was also suitable for the analysis of polycyclic aromatic hydrocarbons (PAHs). This study provided an effective strategy for preparing MOF coatings that can maintain their crystalline structures and high extraction performances in high-temperature steam.Rapid, selective and sensitive sensing of bacteria remains challenging. We report on a highly sensitive and reproducible surface-enhanced Raman spectroscopy (SERS)-based sensing approach for the detection of uropathogenic Escherichia coli (E. coli) bacteria in urine. The assay is based on the specific capture of the bacteria followed by interaction with cetyltrimethylammonium bromide (CTAB)-stabilised gold nanorods (Au NRS) as SERS markers. High sensitivity up to 10 CFU mL-1 is achieved by optimizing the capture interface based on hydrogenated amorphous silicon a-SiH thin films. The integration of CH3O-PEG750 onto a-SiH gives the sensing interface an efficient anti-fouling character, while covalent linkage of antibodies directed against the major type-1 fimbrial pilin FimA of the human pathogen E. coli results in the specific trapping of fimbriated E. coli onto the SERS substrate and their spectral fingerprint identification.Sensitive and specific detection of microRNAs (miRNAs) is of great significance for early cancer diagnosis. Here we report a simple and sensitive fluorescence signal amplification strategy that based on DSN/TdT recycling digestion for miRNA detection. DSN initiates DNA digestion on 3'-phosphate-primer/miRNA heteroduplex which causes miRNA recycle. Triton X-114 datasheet The digested DNA strands with 3'-OH ends enable TdT to synthesize a polydeoxyguanylic tails on the 3'-end. The DNAs with polydeoxyguanylic tails are converted to double-stranded-DNA prior to initiation of DSN/TdT recycling digestion. With the cooperation of TdT and DSN, a new round of digestion and extension is triggered, leading to massive fluorophores separating and signal amplification. The amplification strategy produces large amounts of 3'-OH probes that can be used directly for dsDNA enrichment and DSN digestion. Moreover, both DSN digestion and TdT extension are sequence-independent reaction without the need of complex sequences design. In addition, this strategy is utilized to analyze miRNA samples from MCF-7 cell lysates and Cu (II) ion samples, indicating its potential application in actual sample analysis. The method shows a promising analytical platform for DNA nicking-related studies and tumor biomarkers measuring in clinical diagnostics.In this paper, a simple tungsten disulfide quantum dots (WS2 QDs)-based ratiometric fluorescence method was established for the detection of trypsin and 1, 4-dithiothreitol. Trypsin can hydrolyze cytochrome c into heme-peptide fragments with peroxidase-like activity. In the presence of hydrogen peroxide, the fragments can generates hydroxyl radicals, which can oxidize o-phenylenediamine (OPD) to form 2,3-diaminophenazine (DAP) with a fluorescence peak at 568 nm. DAP can quench the fluorescence of WS2 QDs at 448 nm via fluorescence resonance energy transfer (FRET). When 1, 4-dithiothreitol was present, it can react with hydroxyl radicals, and less OPD was oxidized, which accompanied by the fluorescence intensity of WS2 QDs increased and the fluorescence intensity of DAP decreased. Therefore, the fluorescence intensity ratio (F568/F448) can be used to monitor trypsin and 1, 4-dithiothreitol. A good linear calibration between fluorescence intensity ratio F568/F448 versus trypsin activity and1, 4-dithiothreitol concentration were obtained within 0.2-140 μg mL-1 and 20-200 μmol L-1, respectively. And the detection limit was 0.09 μg mL-1 for trypsin and 6.8 μmol L-1 for 1, 4-dithiothreitol, respectively. Furthermore, the developed ratiometric fluorescence method was successfully applied for trypsin and 1, 4-dithiothreitol assay in human serum samples.A facile strategy for the preparation of nitrogen and phosphorus co-doped carbon dots (N, P-CDs) with long-wavelength emission is attractively proposed in one-pot hydrothermal strategy. The resulting N, P-CDs hold exceptional optical features and display excitation wavelength-independent properties with the emission wavelength at 590 nm, which enable it with the satisfactory relative quantum yield (QY) of 15.6% in long-wavelength region. In addition, the proposed N, P-CDs demonstrates specific selectivity towards ClO- over other competitive reactive oxygen species and exhibits rapid fluorescence response time to ClO-. Moreover, the N, P-CDs exhibits low-cytotoxicity and excellent cell membrane permeability for recognizing ClO- in SMMC-7721 cells, which demonstrates their enormous potential in biological system.The photochemical generation technique of mercury vapor (PCVG) coupled with headspace solid phase microextraction (SPME) and microwave induced plasma optical emission spectrometry (MIP-OES) has been developed and successfully applied for fast and sensitive determination of mercury in complex matrix samples. Mercury vapor was generated by UV photo-reduction of inorganic mercury and methylmercury to mercury vapor in 5% (v/v) formic acid with subsequent gas-liquid separation and preconcentration by solid phase microextraction. A stopped-flow mode of the PCVG-SPME unit was employed with the aim of increasing analyte preconcentration factor, thus improving both sensitivity of determination and detection limits for mercury. The calibration curves were linear up to 20 ng mL-1 with the limit of detection for inorganic mercury and methylmercury of 0.030 and 0.045 ng mL-1, respectively. This manifold allowed a repeatability, expressed as relative standard deviation, of below 5%. Due to differences in efficiency of Hg vapor generation for Hg2+ and CH3Hg+, the quantification was performed against external Hg2+ and CH3Hg+ aqueous standards, respectively. The method was validated by the analysis of two CRM materials of different matrix composition, i.e. estuarine sediment ERM CC580 for total mercury content and tuna fish ERM CE464 for methylmercury content, respectively. The results proved good accuracy of the method with recovery of 101% total mercury and 87.3% methylmercury and precision of 3.8% and 12.5%, respectively. Effect of concomitants in the stopped-flow generation of mercury vapor with the new manifold was also investigated. Next, the proposed method was successfully applied for monitoring of bioaccessible fraction of mercury during their incubation in simulated body fluid in the presence of selenium nanoparticles examined as a potential mercury detoxifying agent.Colorimetric sensors were fabricated by incorporation of anionic colorimetric probes on a hierarchical nanofibrous membrane containing poly-cationic nanodots through intense electrostatic interaction. Unique poly-cationic nanodots were covalently grown on poly (4-vinylpyridine)/polyacrylonitrile nanofibrous membrane through a self-propagation reaction of 2-diethylaminoethyl chloride (DEAE-Cl). The nanodots on the nanofiber surfaces possess strong adsorption affinity and high adsorption capacity toward anionic probes, which contributed to excellent detection sensitivity and sensor stability compared with the co-electrospun sensor. As a proof-of-concept study, phenol red was selected to functionalize the as-fabricated substrate (polyDEAE@P4VP/PAN NFM) to a colorimetric sensor, which shows responses to alkaline vapors. The as-fabricated sensor showed rapid color changes to ammonia and triethylamine (response time less then 10 s), whose detection limits reached 1 ppm and 5 ppm, respectively. The sensor can be repeatedly used for at least 20 cycles by regenerating it in air for 1 min.
Here's my website: https://www.selleckchem.com/products/triton-tm-x-100.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team