Notes
![]() ![]() Notes - notes.io |
e., an increase in distance increased the native species proportion, and the opposite was observed for non-native species. Analyses of 3798 tracking positions of 193 tagged individuals showed massive spring dispersal of non-native species from the reservoir to the main tributary, the Vltava River, and their return to the reservoir for wintering. Their upstream movement positively correlated with an increase in flow rate. Native Salmo trutta showed a specific shift from the Vltava River to smaller streams during the summer, when the presence of non-native species in the Vltava River was most significant. These findings indicate that non-native species repeatedly spread from the reservoir to the upstream river stretch and its tributaries and potentially compete with native species for resources.This study investigated the enhancement effect of N2- and Air-nanobubble water (NBW) supplementation on two-stage anaerobic digestion (AD) of food waste (FW) for separate production of hydrogen and methane. In the first stage for hydrogen production, the highest cumulative H2 yield (27.31 ± 1.21 mL/g-VSadded) was obtained from FW + Air-NBW, increasing by 38% compared to the control (FW + deionized water (DW)). In the second stage for methane production, the cumulative CH4 yield followed a descending order of FW + Air-NBW (373.63 ± 3.58 mL/g-VSadded) > FW + N2-NBW (347.63 ± 7.05 mL/g-VSadded) > FW + DW (300.93 ± 3.24 mL/g-VSadded, control), increasing by 24% in FW + Air-NBW and 16% in FW + N2-NBW compared to the control, respectively. Further investigations indicate that different gas-NBW may positively impact the different stages of AD process. Addition of N2-NBW only enhanced the hydrolysis/acidification of FW with no significant effect on methanogenesis. By comparison, addition of Air-NBW promoted both hydrolysis/acidification stage and methanogenesis stage, reflecting by the enhanced activities of four extracellular hydrolases at the end of hydrolysis/acidification and coenzyme F420 at the end of methanogenesis, respectively. Results from this work suggest the potential application of Air-NBW in the two-stage AD for efficient renewable energy recovery from FW.Land-use change alters the dynamics of freshwater ecosystem services flows by affecting both service supply (by influencing hydrological processes and runoff) and demand (via changes in human water use). However, few studies have considered the wide range of effects of land-use change on freshwater ecosystem services' flows. In this study, we distinguished the impacts of changing water supply and demand in the Aojiang River watershed, Fujian Province, China, an important water resource for more than seven million people. Rapid urbanization between 1991 and 2015 led to a minor increase of 2.5% in the supply of freshwater ecosystem services. However, demand increased by 96.3%, leading to a 25.7% overall decrease in freshwater ecosystem services flows. Downstream demand for freshwater increased substantially due to large shifts in agricultural, urban, and industrial activities. Our analysis provides detailed information on freshwater ecosystem services flows from supply to beneficiaries within a watershed, thus facilitating integrated watershed management and decision making. This study demonstrates how land-use change and ecosystem services' flows can be integrated both at local and regional scales for land-use management, water reallocation, and ecological compensation, thus promoting the sustainability of freshwater ecosystems.Phthalate acid esters (PAEs) are environmentally ubiquitous and have aroused a worldwide concern due to their threats to environment and human health. Di-n-butyl phthalate (DBP) is one of the most frequently observed PAEs in the environment. In this study, a novel bacterium identified as Pseudomonas sp. YJB6 that isolated from PAEs-contaminated soil was determined to have strong DBP-degrading activity. A complete degradation of DBP in 200 mg/L was achieved within 3 days when YJB6 was cultivated at 31.4 °C with an initial inoculation size of 0.6 (OD600) in basic mineral salts liquid medium (MSM), pH 7.6. The degradation curves of DBP (50-2000 mg/L) fitted well the first-order kinetics model, with a half-life (t1/2) ranging from 0.86 to 1.88 d. The main degradation intermediates were identified as butyl-ethyl phthalate (BEP), mono-butyl phthalate (MBP), phthalic acid (PA) and benzoic acid (BA), indicating a new complex and complete biodegradation pathway presented by YJB6. DBP might be metabolized through de-esterification, β-oxidation, and hydrolysis, followed by entering the Krebs cycle of YJB6 as a final step. Strain YJB6 was successfully immobilized with sodium alginate (SA), polyvinyl alcohol (PVA), and SA-PVA. The immobilization significantly improved the stability and adaptability of the cells thus resulting in high volumetric DBP-degrading rates compared to that of the freely suspended cells. In addition, these immobilized cells can be reused for many cycles with well conserved in DBP-degrading activity. DOX inhibitor in vivo The ideal DBP degrading ability of the free and immobilized YJB6 cells suggests that strain YJB6, especially the SA-PVA+ YJB6 promises great potential to remove hazardous PAEs.L-cysteine is used to improve efficiency in anaerobic biological systems as an oxygen scavenger, electron shuttle and substrate source. The performance of MEC by addition of L-cysteine was investigated during start-up and operation phases, respectively. Results showed that the maximum current density of 6.36 ± 0.14 A/m2, hydrogen yield of 1.08 ± 0.05 m3/m3 and energy efficiency of 130% were achieved with L-cysteine adding during operation phase. By contrast, the addition of L-cysteine during the start-up phase reduced the energy efficiency by more than 30%. The microbial community analysis revealed that a higher microbial community richness and diversity were achieved, the enrichment of Sulfuricurvum, Sulfurospirillum, Desulfovibrio and other electroactive microorganisms indicated their relative abundance could be regulated by L-cysteine during start-up phase when L-cysteine was added. This study provided an alternative method to enhanced hydrogen production and a better understanding of the mechanism of L-cysteine action in MEC performance.In this study, the quantitative and qualitative compositions of microplastics (MPs) deposited from the atmosphere in the coastal zone were analysed. Moreover, links between MP deposition and meteorological factors (air humidity, wind speed, precipitation height, and air mass trajectories) were investigated. MP deposition samples were collected in the southern Baltic area in 2017 and 2018 for 286 days in total. The morphological features of MPs (shape and size) were analysed using a digital microscope. Qualitative analysis was performed using micro-attenuated total reflectance Fourier-transform infrared spectroscopy (μATR FT-IR). The size of the deposited MPs ranged from 5 μm to 5000 μm, and smaller size classes ( less then 720 μm) were predominant (70%). Fibres were of the dominant type (60%). Films and fragments constituted 26% and 14% of the total MPs, respectively, while 55% of the MPs found in the study were polymers often used in textiles, packaging materials, and fishing gear (polyesters and polypropylene). The atmospheric MP deposition ranged from 0 m-2·d-1 to 30 m-2·d-1 (average 10 ± 8 m-2·d-1; median 8 m-2·d-1). Based on the air mass trajectory cluster analysis, MPs deposited in Gdynia mainly originated from local sources ( less then 100 km). Furthermore, higher MP deposition occurred when the inflowing air masses were terrestrial, and lower deposition occurred when they were marine. On average, during wet periods twice the amount of MPs was deposited in comparison with dry periods. During dry periods deposition increased with increasing wind speed and was intensified by high relative humidity.Brazil is an important player in the global agribusiness markets, in which grain and beef make up the majority of exports. Barriers to access more valuable sustainable markets emerge from the lack of adequate compliance in supply chains. Here is depicted a mobile application based on cloud/edge computing for the livestock supply chain to circumvent that limitation. The application, called BovChain, is a peer-to-peer (P2P) network connecting landowners and slaughterhouses. The objective of the application is twofold. Firstly, it maximizes sustainable business by reducing transaction costs and by strengthening ties between state-authorized stakeholders. Secondly, it creates metadata useful for digital certification by exploiting CMOS and GPS sensor technologies embedded in low-cost smartphones. Successful declarative transactions in the digital space are recorded as metadata, and the corresponding big data might be valuable for the certification of livestock origin and traceability for sustainability compliance in 'glocal' beef markets.North China suffers from severe haze pollution and has received widespread attentions since the winter of 2012. In addition to human activities, climate variability also plays an important role, particularly in the interannual-decadal variations in the number of haze days in North China (HDNC). Many previous studies separately explored numerous preceding climate drivers, including Arctic sea ice, Eurasia snow and soil moisture, sea surface temperature in Pacific and Atlantic and forcing of Tibetan Plateau, but lacked assessment and analysis of the joint effects. In this study, we reviewed their impacts on HDNC and associated physical mechanisms. Beyond that, the synergetic effects were newly revealed by the observations and numerical experiments with fixed emissions. The preceding signals explained approximately 66% of the interannual-decadal variations in HDNC by exciting teleconnection patterns in winter and influencing the local dispersion conditions in North China. Furthermore, some future research directions were identified, such as the subseasonal variations in HDNC, subseasonal-seasonal prediction of haze by numerical climate models, and changing relationships between HDNC and climate conditions.This work deals with the remediation of a soil that has been enriched with Quinclorac (QNC), one of the herbicides most used in Chile for weed control in rice fields. Quinclorac damages the microflora and macrofauna of soils and is toxic to some susceptible crops, which results in economic loses during crop rotation. Furthermore, Quinclorac a potential contaminant of water resources and soils, given its high mobility and persistence. This has created the need to lower its concentrations in soils intensively cultivated. In this study, an electro-kinetic soil washing system (EKSW) for mobilizing this pesticide in the soil was explored. The performance of this technology was compared by assessing the effect of direct (DP) and reverse (RP) polarity during 15 days under potentiostatic conditions and applying an electric field of 1 V cm-1 between electrodes. Among the main results, the highest removal of QNC was obtained through the EKSW-RP process, which also contributed to the prevention of acidity and alkaline fronts in the soil, compared to the EKSW-DP system. In both cases, the highest accumulation of QNC occurred in the cathodic well by mobilizing the non-ionized contaminant through the electroosmotic flow (EOF) from anode to cathode. After the treatment with EKSW, the wash water accumulated in the anodic and cathodic wells, which contained an important concentration of pesticide, was subjected to electro-oxidation (EO) by applying different current densities (j). The high generation of •OH on the surface of a boron-doped diamond electrode (BDD) allowed for the complete degradation and mineralization of QNC and its major intermediate compounds to CO2. The results of this study show that the application of both coupled stages in this type of remediation technologies would enable the removal of QNC from the soil without altering its chemical and physical properties, constituting an environmentally friendly process.
Read More: https://www.selleckchem.com/products/Adriamycin.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team