Notes
![]() ![]() Notes - notes.io |
Despite decades of extensive research, the progress in developing effective treatments for primary brain tumors lags behind that of other cancers, largely due to the unique challenges of brain tumors (eg, the blood-brain barrier and high heterogeneity) that limit the delivery and efficacy of many therapeutic agents. One way to address this issue is to employ novel trial designs to better optimize the treatment regimen (eg, dose and schedule) in early phase trials to improve the success rate of subsequent phase III trials. The objective of this article is to introduce Bayesian optimal interval (BOIN) designs as a novel platform to design various types of early phase brain tumor trials, including single-agent and combination regimen trials, trials with late-onset toxicities, and trials aiming to find the optimal biological dose (OBD) based on both toxicity and efficacy. Unlike many novel Bayesian adaptive designs, which are difficult to understand and complicated to implement by clinical investigators, the BOIN designs are self-explanatory and user friendly, yet yield more robust and powerful operating characteristics than conventional designs. We illustrate the BOIN designs using a phase I clinical trial of brain tumor and provide software (freely available at www.trialdesign.org) to facilitate the application of the BOIN design.The development of batteries that can be recharged directly by light, without the need for external solar cells or external power supplies, has recently gained interest for powering off-grid devices. Vanadium dioxide (VO2) has been studied as a promising photocathode for zinc-ion batteries because it can both store energy and harvest light. However, the efficiency of the photocharging process depends on electrode structure and charge transport layers. In this work, we report photocathodes using zinc oxide as an electron transport and hole blocking layer on top of which we synthesise VO2. The improved interface and charge separation in these photocathodes offer an improvement in photo-conversion efficiency from ∼0.18 to ∼0.51% compared to previous work on mixed VO2 photocathodes. In addition, a good capacity retention of ∼73% was observed after 500 cycles. The proposed stacked photocathodes reduce the battery light charging time by 3-fold and are therefore an important step towards making this technology more viable.A multianalytical approach was used to characterize the materials in the "Vienna Moamin", an outstanding richly illustrated manuscript from the late thirteenth century, which was made in Italy and is now kept in the Kunsthistorisches Museum Wien. The investigations were carried out with a non-invasive approach by using complementary techniques, such as X-ray fluorescence (XRF), reflection Fourier transform infrared spectroscopy (rFTIR), Raman spectroscopy, and fiber optic reflectance spectroscopy (FORS). In addition, XRF scans were performed in two areas which yielded chemical maps showing the elemental distribution. The results revealed that typical materials from the medieval times were applied for the manuscript. Calcium carbonate on the parchment surface indicated a dehairing process with lime and/or whitening with chalk. Two different iron gall inks were detected in the main text and marginal notes, and vermilion was used for rubrication. The color palette included azurite, a green colorant composed of oscanning XRF for the elucidation of painting techniques, but also the demand of scanning devices utilizing compound specific analytical techniques such as rFTIR.
The online version contains supplementary material available at 10.1186/s40494-021-00553-w.
The online version contains supplementary material available at 10.1186/s40494-021-00553-w.Depicting the temporal and spatial evolution pattern of global world cultural heritage systematically and finely is the basis of heritage recognition and protection. In this study, 869 world cultural heritage inscriptions (through 2019) were selected as the research objects, and the times and types of each World Heritage site were manually annotated from more than 5000 pieces of data. Through time series modelling, the advantages of and changes in heritage declarations in different regions and periods were analysed, and the impact of heritage strategy on the number of heritage sites included in each region was evaluated. The results showed that the implementation of heritage policy greatly impacted each region, especially on the number of heritage sites in Asia and the Pacific region. Using the heritage era to carry out modelling analysis, from the perspective of the integrity of historical heritage cultural types, it is considered that there may be cultural heritage sites in the Caribbean and Latin America tods. It is suggested that the strategy of world cultural heritage collection should be further optimized to fully guarantee the balance of regions, countries and types, and the heritage value should be fully considered in heritage protection with more diversity and complexity of types.Non-invasive electrocardiographic imaging (ECGI) is a novel clinical tool for mapping ventricular arrhythmia. Using multiple body surface electrodes to collect unipolar electrograms and conventional medical imaging of the heart, an epicardial shell can be created to display calculated electrograms. This calculation is achieved by solving the inverse problem and allows activation times to be calculated from a single beat. The technology was initially pioneered in the US using an experimental torso-shaped tank. Accuracy from studies in humans has varied. Early data was promising, with more recent work suggesting only moderate accuracy when reproducing cardiac activation. Despite these limitations, the system has been successfully used in pioneering work with non-invasive cardiac radioablation to treat ventricular arrhythmia. This suggests that the resolution may be sufficient for treatment of large target areas. Although untested in a well conducted clinical study it is likely that it would not be accurate enough to guide more discreet radiofrequency ablation.AF has been consistently associated with multiple forms of dementia, including idiopathic dementia. Outcomes after catheter ablation for AF are favourable and patients experience a better quality of life, arrhythmia-free survival, and lower rates of hospitalisation compared to patients treated with antiarrhythmic drugs. Catheter ablation is consistently associated with lower rates of stroke compared to AF management without ablation in large national and healthcare system databases. Multiple observational trials have shown that catheter ablation is also associated with a lower risk of cognitive decline, dementia and improved cognitive testing that can be explained through a variety of pathways. Long-term, adequately powered, randomised trials are required to define the role of catheter ablation in the management of AF as a means to lower the risk of cognitive decline, stroke and dementia.Recent advances have been made in AF treatment, including the role of early rhythm control and landmark clinical trials using ablation therapy. However, some treatment gaps remain, including the creation of durable lesions outside the pulmonary veins and effective treatment of longstanding persistent AF. A novel epicardial-endocardial ablation approach - the hybrid convergent procedure - was developed to combine surgical and catheter ablation techniques into a collaborative, multidisciplinary approach to managing AF. In this review, the authors discuss recently published data on hybrid convergent ablation, including results of the CONVERGE clinical trial, in the context of current challenges to treatment of persistent and long-standing persistent AF. GS-4224 nmr The review also aims to provide perspective on outstanding questions and future directions in this area.The His-Purkinje system is a network of bundles and fibres comprised of specialised cells that allow for coordinated, synchronous activation of the ventricles. Although the histology and physiology of the His-Purkinje system have been studied for more than a century, its role in ventricular arrhythmias has recently been discovered with the ongoing elucidation of the mechanisms leading to both benign and life-threatening arrhythmias. Studies of Purkinje-cell electrophysiology show multiple mechanisms responsible for ventricular arrhythmias, including enhanced automaticity, triggered activity and reentry. The variation in functional properties of Purkinje cells in different areas of the His-Purkinje system underlie the propensity for reentry within Purkinje fibres in structurally normal and abnormal hearts. Catheter ablation is an effective therapy in nearly all forms of reentrant arrhythmias involving Purkinje tissue. However, identifying those at risk of developing fascicular arrhythmias is not yet possible. Future research is needed to understand the precise molecular and functional changes resulting in these arrhythmias.Extensive knowledge of the anatomy of the atrioventricular conduction axis, and its branches, is key to the success of permanent physiological pacing, either by capturing the His bundle, the left bundle branch or the adjacent septal regions. The inter-individual variability of the axis plays an important role in underscoring the technical difficulties known to exist in achieving a stable position of the stimulating leads. In this review, the key anatomical features of the location of the axis relative to the triangle of Koch, the aortic root, the inferior pyramidal space and the inferoseptal recess are summarised. In keeping with the increasing number of implants aimed at targeting the environs of the left bundle branch, an extensive review of the known variability in the pattern of ramification of the left bundle branch from the axis is included. This permits the authors to summarise in a pragmatic fashion the most relevant aspects to be taken into account when seeking to successfully deploy a permanent pacing lead.During His-Purkinje conduction system (HPS) pacing, it is crucial to confirm capture of the His bundle or left bundle branch versus myocardialonly capture. For this, several methods and criteria for differentiation between non-selective (ns) capture - capture of the HPS and the adjacent myocardium - and myocardial-only capture were developed. HPS capture results in faster and more homogenous depolarisation of the left ventricle than right ventricular septal (RVS) myocardial-only capture. Specifically, the depolarisation of the left ventricle (LV) does not require slow cell-to-cell spread of activation from the right side to the left side of the interventricular septum but begins simultaneously with QRS onset as in native depolarisation. These phenomena greatly influence QRS complex morphology and form the basis of electrocardiographic differentiation between HPS and myocardial paced QRS. Moreover, the HPS and the working myocardium are different tissues within the heart muscle that vary not only in conduction velocities but also in refractoriness and capture thresholds. These last two differences can be exploited for the diagnosis of HPS capture using dynamic pacing manoeuvres, namely differential output pacing, programmed stimulation and burst pacing. This review summarises current knowledge of this subject.
Here's my website: https://www.selleckchem.com/products/gs-4224.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team