Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
The opposite seasonal variations were observed for soil gas radon concentrations. No distinctive seasonal variations were recorded in results of uranium, thorium and potassium contents in soil measured in situ by the gamma-ray spectrometer. The correlation coefficients were calculated on the base of annual average data. The correlations between ambient gamma dose rate and radon concentration in soil and in the atmosphere were 0.83 and 0.62 respectively, which may suggest that ambient gamma dose rate can be a useful parameter to indicate geogenic radon potential.Wildfires are relatively rare in subarctic tundra ecosystems, but they can strongly change ecosystem properties. Short-term fire effects on subarctic tundra vegetation are well documented, but long-term vegetation recovery has been studied less. The frequency of tundra fires will increase with climate warming. Understanding the long-term effects of fire is necessary to predict future ecosystem changes. We used a space-for-time approach to assess vegetation recovery after fire over more than four decades. We studied soil and vegetation patterns on three large fire scars (>44, 28 and 12 years old) in dry, lichen-dominated forest tundra in Western Siberia. On 60 plots, we determined soil temperature and permafrost thaw depth, sampled vegetation and measured plant functional traits. We assessed trends in Normalized Difference Vegetation Index (NDVI) to support the field-based results on vegetation recovery. Soil temperature, permafrost thaw depth and total vegetation cover had recovered to pre-fire levels after >44 years, as well as total vegetation cover. In contrast, after >44 years, functional groups had not recovered to the pre-fire state. Burnt areas had lower lichen and higher bryophyte and shrub cover. The dominating shrub species, Betula nana, exhibited a higher vitality (higher specific leaf area and plant height) on burnt compared with control plots, suggesting a fire legacy effect in shrub growth. Our results confirm patterns of shrub encroachment after fire that were detected before in other parts of the Arctic and Subarctic. In the so far poorly studied Western Siberian forest tundra we demonstrate for the first time, long-term fire-legacies on the functional composition of relatively dry shrub- and lichen-dominated vegetation.
Extreme temperature events have been observed to appear more frequently and with greater intensity in Taiwan in recent decades due to climate change, following the global trend. Projections of temperature extremes across different climate zones and their impacts on related mortality and adaptation have not been well studied.
We projected site-specific future temperature extremes by statistical downscaling of 8 global climate models followed by Bayesian model averaging from 2021 to 2060 across Taiwan under the representative concentration pathway (RCP) scenarios RCP2.6, RCP4.5, and RCP8.5. We then calculated the attributable mortality (AM) in 6 municipalities and in the eastern area by multiplying the city/county- and degree-specific relative risk of mortality according to the future population projections. We estimated the degree of adaptation to heat by slope reduction of the projected AM to be comparable with that in 2018.
The annual number of hot days with mean temperatures over 30°C was predicted toositive effect from 2045 to 2055. However, there is an overall positive and increasing trend of net effect for elderly individuals under all the emission scenarios. Active adaptation plans need to be well developed to face future challenges due to climate change, especially for the elderly population in central and southern Taiwan.
Spatiotemporal variations in AM in cities in different climate zones are projected in Taiwan and are expected to have a net negative effect in the near future before shifting to a net positive effect from 2045 to 2055. However, there is an overall positive and increasing trend of net effect for elderly individuals under all the emission scenarios. Active adaptation plans need to be well developed to face future challenges due to climate change, especially for the elderly population in central and southern Taiwan.
Do program and participant characteristics influence people's willingness to undertake exercise programs to prevent recurrence of low back pain?
Discrete choice experiment.
Six hundred and forty-seven people with a recent history of low back pain.
Recruitment and participation occurred online. Participants were randomised to a block of 10 choice tasks, where the characteristics of the exercise program varied systematically. The characteristics that were presented for each exercise program were mode of exercise delivery, mode of supervision, setting, duration, weekly frequency, travel time, risk of recurrence, and costs. For each choice task, participants chose between no program or an exercise program with the characteristics as presented.
Choices were analysed using mixed logit models. RDX5791 Latent class models examined preference heterogeneity and identified participant-level characteristics predictive of preferences.
There appeared to be an underlying preference for exercise compared with no exerciselow back pain should be advised explicitly about which exercise programs reduce recurrence. Understanding low back pain patients' preferences can help inform the implementation of existing prevention programs and guide the design of new prevention programs.The nutrient discharge associated with submarine groundwater discharge (SGD) into the Arabian Sea has been investigated for the first time using the Radon isotope (222Rn) mass balance model at three sites along the southwest coast of India. The SGD flux varied in the range of 49.48×104 - 335.84×104 m3/day, with high (low) discharge during the low (high) tide. SGD delivers a considerable amount of the nutrient into the Arabian Sea with 2.10×104 to 11.66×104 mol/day dissolved inorganic nitrogen (DIN), 1.23×102 to 56.31×102 mol/day dissolved inorganic phosphate (DIP), and 7.28×104 to 24.44×104 mol/day dissolved silicate (DSi). This significant nutrient input to the coastal waters through SGD is mainly attributed to the land-use practices like agricultural activities, improper waste disposal, and thickly populated coastal settlement zones. The increase in the nutrient discharge may lead to phytoplankton bloom in the nearshore environment and can accelerate seasonal coastal hypoxia over the western Indian shelf. This evidence of considerably high nutrient flux through SGD advocates the importance of understanding SGD associated flux along the southwest coast of India to maintain a sustainable ecological balance.
Website: https://www.selleckchem.com/products/tenapanor.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team