Notes
Notes - notes.io |
A subset of bladder tumors have genomic features suggestive of HRD and therefore may be more likely to benefit from therapies such as platinum agents and PARP inhibitors that target tumor HRD.
A subset of bladder tumors have genomic features suggestive of HRD and therefore may be more likely to benefit from therapies such as platinum agents and PARP inhibitors that target tumor HRD.
Intratumoral hepatitis B virus (HBV) integrations and mutations are related to hepatocellular carcinoma (HCC) progression. Circulating cell-free DNA (cfDNA) has shown itself as a powerful noninvasive biomarker for cancer. However, the HBV integration and mutation landscape on cfDNA remains unclear.
A cSMART (Circulating Single-Molecule Amplification and Resequencing Technology)-based method (SIM) was developed to simultaneously investigate HBV integration and mutation landscapes on cfDNA with HBV-specific primers covering the whole HBV genome. Patients with HCC (
= 481) and liver cirrhosis (LC;
= 517) were recruited in the study.
A total of 6,861 integration breakpoints including
and
were discovered in HCC cfDNA, more than in LC. NF-κB inhibitor The concentration of circulating tumor DNA (ctDNA) was positively correlated with the detection rate of these integration hotspots and total HBV integration events in cfDNA. To track the origin of HBV integrations in cfDNA, whole-genome sequencing (WGS) was performed on their paired tumor tissues. The paired comparison of WGS data from tumor tissues and SIM data from cfDNA confirmed most recurrent integration events in cfDNA originated from tumor tissue. The mutational landscape across the whole HBV genome was first generated for both HBV genotype C and B. A region from nt1100 to nt1500 containing multiple HCC risk mutation sites (OR > 1) was identified as a potential HCC-related mutational hot zone.
Our study provides an in-depth delineation of HBV integration/mutation landscapes at cfDNA level and did a comparative analysis with their paired tissues. These findings shed light on the possibilities of noninvasive detection of virus insertion/mutation.
Our study provides an in-depth delineation of HBV integration/mutation landscapes at cfDNA level and did a comparative analysis with their paired tissues. These findings shed light on the possibilities of noninvasive detection of virus insertion/mutation.
Activating mutations in
promote resistance to HER2-targeted therapy in breast cancer; however, inhibition of PI3K alone leads to escape via feedback upregulation of HER3. Combined inhibition of HER2, HER3, and PI3K overcomes this mechanism preclinically.
This phase I study investigated the MTD of alpelisib given in combination with trastuzumab and LJM716 (a HER3-targeted antibody) in patients with
-mutant HER2-positive (HER2
) metastatic breast cancer (MBC) using the continual reassessment method. Secondary analyses included efficacy and exploratory correlative studies.
Ten patients were treated initially with daily alpelisib (arm A). Grade ≥3 adverse events seen in ≥2 patients included diarrhea (
= 6), hypokalemia (
= 3), abnormal liver enzymes (
= 3), hyperglycemia (
= 2), mucositis (
= 2), and elevated lipase (
= 2). The MTD of alpelisib in arm A was 250 mg daily. This prompted the opening of arm B in which 11 patients received intermittently dosed alpelisib. Grade ≥3 adverse events seen in ≥2 patients included diarrhea (
= 5), hypokalemia (
= 3), and hypomagnesemia (
= 2). The MTD of alpelisib in arm B was 350 mg given 4 days on, 3 days off. Among 17 patients assessed, 1 had a partial response, 14 had stable disease, and 2 had disease progression at best response. Five patients had stable disease for >30 weeks. mRNA profiling of pre- and on-treatment tissue demonstrated
target engagement by alpelisib via induction of downstream signaling and feedback pathways.
Combination treatment with alpelisib, trastuzumab, and LJM716 was limited by gastrointestinal toxicity. Further efforts are warranted to target the PI3K pathway in HER2
MBC.
Combination treatment with alpelisib, trastuzumab, and LJM716 was limited by gastrointestinal toxicity. Further efforts are warranted to target the PI3K pathway in HER2+ MBC.Activating mutations of the anaplastic lymphoma kinase (ALK) gene were identified in the pediatric tumor neuroblastoma, in 2008. Rapid translation of this finding into targeted neuroblastoma therapy was facilitated by the availability of ALK inhibitors developed for adult malignancies and an efficient preclinical and clinical research program.See related article by Foster et al., p. 3543.
This study investigated the efficacy and safety of oral PARP inhibitor veliparib, plus carboplatin and etoposide in patients with treatment-naïve, extensive-stage small cell lung cancer (ED-SCLC).
Patients were randomized 111 to veliparib [240 mg twice daily (BID) for 14 days] plus chemotherapy followed by veliparib maintenance (400 mg BID; veliparib throughout), veliparib plus chemotherapy followed by placebo (veliparib combination only), or placebo plus chemotherapy followed by placebo (control). Patients received 4-6 cycles of combination therapy, then maintenance until unacceptable toxicity/progression. The primary endpoint was progression-free survival (PFS) with veliparib throughout versus control.
Overall (
= 181), PFS was improved with veliparib throughout versus control [hazard ratio (HR), 0.67; 80% confidence interval (CI), 0.50-0.88;
= 0.059]; median PFS was 5.8 and 5.6 months, respectively. There was a trend toward improved PFS with veliparib throughout versus control in SLFN11-positive patients (HR, 0.6; 80% CI, 0.36-0.97). Median overall survival (OS) was 10.1 versus 12.4 months in the veliparib throughout and control arms, respectively (HR, 1.43; 80% CI, 1.09-1.88). Grade 3/4 adverse events were experienced by 82%, 88%, and 68% of patients in the veliparib throughout, veliparib combination-only and control arms, most commonly hematologic.
Veliparib plus platinum chemotherapy followed by veliparib maintenance demonstrated improved PFS as first-line treatment for ED-SCLC with an acceptable safety profile, but there was no corresponding benefit in OS. Further investigation is warranted to define the role of biomarkers in this setting.
Veliparib plus platinum chemotherapy followed by veliparib maintenance demonstrated improved PFS as first-line treatment for ED-SCLC with an acceptable safety profile, but there was no corresponding benefit in OS. Further investigation is warranted to define the role of biomarkers in this setting.The isocortex of all mammals studied to date shows a progressive increase in the amount and continuity of background activity during early development. In humans the transition from a discontinuous (mostly silent, intermittently bursting) cortex to one that is continuously active is complete soon after birth and is a critical prognostic indicator. In the visual cortex of rodents this switch from discontinuous to continuous background activity occurs during the 2 d before eye-opening, driven by activity changes in relay thalamus. The factors that regulate the timing of continuity development, which enables mature visual processing, are unknown. Here, we test the role of the retina, the primary input, in the development of continuous spontaneous activity in the visual cortex of mice using depth electrode recordings from enucleated mice in vivo Bilateral enucleation at postnatal day (P)6, one week before the onset of continuous activity, acutely silences cortex, yet firing rates and early oscillations return to normal within 2 d and show a normal developmental trajectory through P12. Enucleated animals showed differences in silent period duration and continuity on P13 that resolved on P16, and an increase in low frequency power that did not. Our results show that the timing of cortical activity development is not determined by the major driving input to the system. Rather, even during a period of rapid increase in firing rates and continuity, neural activity in the visual cortex is under homeostatic control that is largely robust to the loss of the primary input.Bats provide a powerful mammalian model to explore the neural representation of complex sounds, as they rely on hearing to survive in their environment. The inferior colliculus (IC) is a central hub of the auditory system that receives converging projections from the ascending pathway and descending inputs from auditory cortex. In this work, we build an artificial neural network to replicate auditory characteristics in IC neurons of the big brown bat. We first test the hypothesis that spectro-temporal tuning of IC neurons is optimized to represent the natural statistics of conspecific vocalizations. We estimate spectro-temporal receptive fields (STRFs) of IC neurons and compare tuning characteristics to statistics of bat calls. The results indicate that the FM tuning of IC neurons is matched with the statistics. Then, we investigate this hypothesis on the network optimized to represent natural sound statistics and to compare its output with biological responses. We also estimate biomimetic STRFs from the artificial network and correlate their characteristics to those of biological neurons. Tuning properties of both biological and artificial neurons reveal strong agreement along both spectral and temporal dimensions, and suggest the presence of nonlinearity, sparsity, and complexity constraints that underlie the neural representation in the auditory midbrain. Additionally, the artificial neurons replicate IC neural activities in discrimination of social calls, and provide simulated results for a noise robust discrimination. In this way, the biomimetic network allows us to infer the neural mechanisms by which the bat's IC processes natural sounds used to construct the auditory scene.The majority of gastrointestinal stromal tumors (GIST) harbor constitutively activating mutations in KIT tyrosine kinase. Imatinib, sunitinib, and regorafenib are available as first-, second-, and third-line targeted therapies, respectively, for metastatic or unresectable KIT-driven GIST. Treatment of patients with GIST with KIT kinase inhibitors generally leads to a partial response or stable disease but most patients eventually progress by developing secondary resistance mutations in KIT. Tumor heterogeneity for secondary resistant KIT mutations within the same patient adds further complexity to GIST treatment. Several other mechanisms converge and reactivate the MAPK pathway upon KIT/PDGFRA-targeted inhibition, generating treatment adaptation and impairing cytotoxicity. To address the multiple potential pathways of drug resistance in GIST, the KIT/PDGFRA inhibitor ripretinib was combined with MEK inhibitors in cell lines and mouse models. Ripretinib potently inhibits a broad spectrum of primary and drug-resistant KIT/PDGFRA mutants and is approved by the FDA for the treatment of adult patients with advanced GIST who have received previous treatment with 3 or more kinase inhibitors, including imatinib. Here we show that ripretinib treatment in combination with MEK inhibitors is effective at inducing and enhancing the apoptotic response and preventing growth of resistant colonies in both imatinib-sensitive and -resistant GIST cell lines, even after long-term removal of drugs. The effect was also observed in systemic mastocytosis (SM) cells, wherein the primary drug-resistant KIT D816V is the driver mutation. Our results show that the combination of KIT and MEK inhibition has the potential to induce cytocidal responses in GIST and SM cells.
Homepage: https://www.selleckchem.com/products/omaveloxolone-rta-408.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team