Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Meditation practice entails moments of distraction dominated by self-generated thoughts (i.e. mind wandering). Initial studies assessing the neural correlates of mind wandering in the context of meditation practice have identified an important role of theta (4-8 Hz) and alpha (8-14 Hz) neural oscillations. In this study, we use a probe-caught experience sampling paradigm to assess spectral changes in the theta-alpha frequency range during mind wandering in the context of breath focus meditation. Electroencephalography (EEG) was measured in 25 novice meditation practitioners during a breath focus task in which they were repeatedly probed to report whether they were focusing on their breath or thinking about something else. Mind wandering episodes were associated with an increase in the amplitude and a decrease in the frequency of theta (4-8 Hz) oscillations. Conversely, alpha oscillations (8-14 Hz) were shown to decrease in amplitude and increase in frequency during mind wandering relative to breath focus. read more In addition, mind wandering episodes were shown to be accompanied by increased harmonicity and phase synchrony between alpha and theta rhythms. Because similar spectral changes in the theta-alpha frequency range have been reported during controlled cognitive processes involving memory and executive control, we speculate that mind wandering and controlled processes could share some neurocognitive mechanisms. From a translational perspective, this study indicates that oscillatory activity in the theta-alpha frequency range could form adequate parameters for developing EEG-neurofeedback protocols aimed at facilitating the detection of mind wandering during meditation practice.We report a challenging copper-catalyzed Cformyl -H arylation of salicylaldehydes with arylboronic acids that involves unique salicylaldehydic copper species that differ from reported salicylaldehydic rhodacycles and palladacycles. This protocol has high chemoselectivity for the Cformyl -H bond compared to the phenolic O-H bond involving copper catalysis under high reaction temperatures. This approach is compatible with a wide range of salicylaldehyde and arylboronic acid substrates, including estrone and carbazole derivatives, which leads to the corresponding arylation products. Mechanistic studies show that the 2-hydroxy group of the salicylaldehyde substrate triggers the formation of salicylaldehydic copper complexes through a CuI /CuII /CuIII catalytic cycle.The Twin Cycle Hypothesis postulated that type 2 diabetes was a result of excess liver fat causing excess supply of fat to the pancreas with resulting dysfunction of both organs. If this was so, the condition should be able to be returned to normal by calorie restriction. The Counterpoint study tested this prediction in short duration type 2 diabetes and showed that liver glucose handling returned to normal within 7 days and that beta cell function returned close to normal over 8 weeks. Subsequent studies have demonstrated the durability of remission from type 2 diabetes. Remarkably, during the first 12 months of remission, the maximum functional beta cell mass returns completely to normal and remains so for at least 24 months, consistent with re-gain of insulin secretory function of beta cells which had de-differentiated in the face of chronic nutrient oversupply. The likelihood of achieving remission after 15% weight loss has been shown to be mainly determined by duration of diabetes, with responders having better beta cell function at baseline. Remission is independent of BMI, underscoring the Personal fat Threshold concept that type 2 diabetes develops when an individual acquires more fat than can be individually tolerated even at a BMI which in the non-obese range. Observations on people of South Asian or Afro-American ethnicity confirm that substantial weight loss achieves remission in the same way as in the largely white Europeans studied in detail. Diagnosis of type 2 diabetes can now be regarded as an urgent signal that weight loss must be achieved to avoid a progressive decline of health.Cyanobacteria are well recognised as producers of a wide range of natural compounds that are in turn recognised as toxins that have potential and useful applications in the future as pharmaceutical agents. The order Nostocales, which is largely overlooked in this regard, has become increasingly recognised as a source of toxin producers including Anabaena, Nostoc, Hapalosiphon, Fischerella, Anabaenopsis, Aphanizomenon, Gloeotrichia, Cylindrospermopsis, Scytonema, Raphidiopsis, Cuspidothrix, Nodularia, Stigonema, Calothrix, Cylindrospermum and Desmonostoc species. The toxin compounds (i.e., microcystins, nodularin, anatoxins, ambiguines, fischerindoles and welwitindolinones) and metabolites are about to have a destructive effect on both inland and aquatic environment aspects. The present review gives an overview of the various toxins that are extracted by the order Nostocales. The current research suggests that these compounds that are produced by cyanobacterial species have promising future considerations as potentially harmful algae and as promising leads for drug discovery.Predicting the structure of multi-protein complexes is a grand challenge in biochemistry, with major implications for basic science and drug discovery. Computational structure prediction methods generally leverage predefined structural features to distinguish accurate structural models from less accurate ones. This raises the question of whether it is possible to learn characteristics of accurate models directly from atomic coordinates of protein complexes, with no prior assumptions. Here we introduce a machine learning method that learns directly from the 3D positions of all atoms to identify accurate models of protein complexes, without using any precomputed physics-inspired or statistical terms. Our neural network architecture combines multiple ingredients that together enable end-to-end learning from molecular structures containing tens of thousands of atoms a point-based representation of atoms, equivariance with respect to rotation and translation, local convolutions, and hierarchical subsampling operations.
My Website: https://www.selleckchem.com/products/GDC-0449.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team