Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
This paper attempts to uncover one possible method for the IMR (indoor mobile robot) to perform indoor exploration associated with SLAM (simultaneous localization and mapping) using LiDAR. Specifically, the IMR is required to construct a map when it has landed on an unexplored floor of a building. We had implemented the e-SLAM (exploration-based SLAM) using the coordinate transformation and the navigation prediction techniques to achieve that purpose in the engineering school building which consists of many 100-m2 labs, corridors, elevator waiting space and the lobby. We first derive the LiDAR mesh for the orthogonal walls and filter out the static furniture and dynamic humans in the same space as the IMR. Then, we define the LiDAR pose frame including the translation and rotation from the orthogonal walls. According to the MSC (most significant corner) obtained from the intersection of the orthogonal walls, we calculate the displacement of the IMR. The orientation of the IMR is calculated from the alignment of orthogonal walls in the consecutive LiDAR pose frames, which is also assisted by the LQE (linear quadratic estimation) method. All the computation can be done in a single processor machine in real-time. The e-SLAM technique leads to a potential for the in-house service robot to start operation without having pre-scan LiDAR maps, which can save the installation time of the service robot. In this study, we use only the LiDAR and compared our result with the IMU to verify the consistency between the two navigation sensors in the experiments. The scenario of the experiment consists of rooms, corridors, elevators, and the lobby, which is common to most office buildings.Parkinson's disease (PD) and progressive supranuclear palsy (PSP) are neurodegenerative movement disorders associated with cognitive dysfunction. The Luria's Alternating Series Test (LAST) is a clinical tool sensitive to both graphomotor problems and perseverative tendencies that may suggest the dysfunction of prefrontal and/or frontostriatal areas and may be used in PD and PSP assessment. It requires the participant to draw a series of alternating triangles and rectangles. In the study, two clinical groups-51 patients with PD and 22 patients with PSP-were compared to 32 neurologically intact seniors. Participants underwent neuropsychological assessment. The LAST was administered in a paper and pencil version, then scanned and preprocessed. The series was automatically divided into characters, and the shapes were recognized as rectangles or triangles. In the feature extraction step, each rectangle and triangle was regarded both as an image and a two-dimensional signal, separately and as a part of the series. Standard and novel features were extracted and normalized using characters written by the examiner. Out of 71 proposed features, 51 differentiated the groups (p less then 0.05). A classifier showed an accuracy of 70.5% for distinguishing three groups.Due to increased exposure to ultraviolet radiation caused by increased outdoor activities, the incidence of skin cancer is increasing. Incision is the most typical method for treating skin cancer, and various treatments that can minimize the risks of incision surgery are being investigated. Among them, photothermal therapy is garnering attention because it does not cause bleeding and affords rapid recovery. In photothermal therapy, tumor death is induced via temperature increase. In this study, a numerical study based on heat transfer theory was conducted to investigate the death of squamous cell carcinoma located in the skin layer based on various shapes of gold nanoparticles (AuNPs) used in photothermal therapy. The quantitative correlation between the conditions of various AuNPs and the laser intensity that yields the optimal photothermal treatment effect was derived using the effective apoptosis ratio. It was confirmed that optimal conditions exist for maximizing apoptosis within a tumor tissue and minimizing the thermal damage to surrounding normal tissues when using AuNPs under various conditions. Furthermore, it is envisioned that research result will be utilized as a standard for photothermal treatment in the future.In this research, we analyse data obtained from sensors when a user handwrites or draws on a tablet to detect whether the user is in a specific mood state. First, we calculated the features based on the temporal, kinematic, statistical, spectral and cepstral domains for the tablet pressure, the horizontal and vertical pen displacements and the azimuth of the pen's position. Next, we selected features using a principal component analysis (PCA) pipeline, followed by modified fast correlation-based filtering (mFCBF). PCA was used to calculate the orthogonal transformation of the features, and mFCBF was used to select the best PCA features. The EMOTHAW database was used for depression, anxiety and stress scale (DASS) assessment. The process involved the augmentation of the training data by first augmenting the mood states such that all the data were the same size. Then, 80% of the training data was randomly selected, and a small random Gaussian noise was added to the extracted features. Varoglutamstat Automated machine learning was employed to train and test more than ten plain and ensembled classifiers. For all three moods, we obtained 100% accuracy results when detecting two possible grades of mood severities using this architecture. The results obtained were superior to the results obtained by using state-of-the-art methods, which enabled us to define the three mood states and provide precise information to the clinical psychologist. The accuracy results obtained when detecting these three possible mood states using this architecture were 82.5%, 72.8% and 74.56% for depression, anxiety and stress, respectively.Trajectory data represent an essential source of information on travel behaviors and human mobility patterns, assuming a central role in a wide range of services related to transportation planning, personalized recommendation strategies, and resource management plans. The main issue when dealing with trajectory recordings, however, is characterized by temporary losses in the data collection, causing possible spatial-temporal gaps and missing trajectory segments. This is especially critical in those use cases based on non-repetitive individual motion traces, when the user's missing information cannot be directly reconstructed due to the absence of historical individual repetitive routes. Inserted in the context of location-based trajectory modeling, we tackle the problem by proposing a technical parallelism with the natural language processing domain. Specifically, we introduce the use of the Bidirectional Encoder Representations from Transformers (BERT), a state-of-the-art language representation model, into the trajectory processing research field. By training deep bidirectional representations from unlabeled location sequences, jointly conditioned on both left and right context, we derive an explicit predicted estimation of the missing locations along the trace. The proposed framework, named TraceBERT, was tested on a real-world large-scale trajectory dataset of short-term tourists, exploring an effective attempt of adapting advanced language modeling approaches into mobility-based applications and demonstrating a prominent potential on trajectory reconstruction over traditional statistical approaches.We present an overview of a beam-based approach to ultra-wide band (UWB) tomographic inverse scattering, where beam-waves are used for local data-processing and local imaging, as an alternative to the conventional plane-wave and Green's function approaches. Specifically, the method utilizes a phase-space set of iso-diffracting beam-waves that emerge from a discrete set of points and directions in the source domain. It is shown that with a proper choice of parameters, this set constitutes a frame (an overcomplete generalization of a basis), termed "beam frame", over the entire propagation domain. An important feature of these beam frames is that they need to be calculated once and then used for all frequencies, hence the method can be implemented either in the multi-frequency domain (FD), or directly in the time domain (TD). The algorithm consists of two phases in the processing phase, the scattering data is transformed to the beam domain using windowed phase-space transformations, while in the imaging phase, the beams are backpropagated to the target domain to form the image. The beam-domain data is not only localized and compressed, but it is also physically related to the local Radon transform (RT) of the scatterer via a local Snell's reflection of the beam-waves. This expresses the imaging as an inverse local RT that can be applied to any local domain of interest (DoI). In previous publications, the emphasis has been set on TD data processing using a special class of localized space-time beam-waves (wave-packets). The goal of the present paper is to present the imaging scheme in the UWB FD, utilizing simpler Fourier-based data-processing tools in the space and time domains.This paper proposes a novel method for physical fatigue assessment that can be applied in wearable systems, by utilizing a set of real-time measurable cardiovascular parameters. Daylength measurements, including a morning test set, physical exercise during the day, and an afternoon test set were conducted on 16 healthy subjects (8 female and 8 male). To analyze cardiovascular parameters for physical fatigue assessment, electrocardiography, pulse wave and blood pressure were measured during the test sets. The fatigue assessment questionnaire score, reaction time, countermovement jump height and hand grip strength were also measured and used as reference parameters. This study demonstrates that (i) the compiled test battery can selectively assess the rested vs. physically-fatigued states; (ii) the obtained linear support-vector machine, trained using the heart rate variability based parameter (F-score 0.842, accuracy 0.813) and pulse arrival time based parameter (F-score 0.875, accuracy 0.875) shows a promising ability to classify between the physically mildly fatigued and significantly fatigued states. Despite the somewhat limited study group size, the results of the study are unique and provide a significant advancement on the existing physical fatigue assessment methods towards a personalized and continuous real-time fatigue monitoring system with wearable sensors.This work presents polarization property studies of water clouds using a circular polarization lidar through a simulation approach. The simulation approach is based on a polarized, semianalytic Monte Carlo method under multiple-scattering conditions and considers three types of water clouds (namely homogeneous, inhomogeneous and partially inhomogeneous). The simulation results indicate that the layer-integrated circular depolarization ratios show similar variation trends as those of layer-integrated linear depolarization ratios. The Mishchenko-Hovenier relationship is validated to correlate the simulated layer-integrated circular and linear depolarization ratios. In addition, the cloud droplet effective radius, extinction coefficient, lidar field-of-view (FOV) and height of the cloud bottom are all found to affect the layer-integrated depolarization ratio. The current work theoretically indicates that a circular polarization lidar can efficiently perform measurements of water clouds, enjoying the advantage of higher sensitivity compared to a traditional linear polarization lidar.
Read More: https://www.selleckchem.com/products/pq912.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team