Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
aegypti populations.The use of synthetic insecticides has been a solution to reduce mosquito-borne disease transmission for decades. Currently, no single intervention is sufficient to reduce the global disease burden caused by mosquitoes. Problems associated with extensive usage of synthetic compounds have increased substantially which makes mosquito-borne disease elimination and prevention more difficult over the years. Thus, it is crucial that much safer and effective mosquito control strategies are developed. Natural compounds from plants have been efficiently used to fight insect pests for a long time. Plant-based bioinsecticides are now considered a much safer and less toxic alternative to synthetic compounds. Here, we discuss candidate plant-based compounds that show larvicidal, adulticidal, and repellent properties. Our discussion also includes their mode of action and potential impact in mosquito disease transmission and circumvention of resistance. This review improves our knowledge on plant-based bioinsecticides and the potential for the development of state-of-the-art mosquito control strategies.Vertical stratification and host tree species are factors with a high influence on the structure of communities of xylobiont beetles. However, little is known about how this influence varies between common and rare species. Based on estimated species richness, we compared alpha and beta diversity patterns of common and rare species in the canopy of the Leipzig floodplain forest to assess their response to vertical stratification and tree species. We used two measures of rarity threat level in red lists and abundance based on octaves. The understory displayed a significantly higher number of common species than the canopy strata. Conversely, the canopy strata harbored a higher number of rare species. Turnover was always dominant over richness differences in beta diversity partitions. Using Raup-Crick null models and non-metric multidimensional scaling, we found that the vertical strata accounted for 19% of the overall beta diversity of common species and for 15% of the overall beta diversity of rare species. The tree species accounted for 7% of the overall beta diversity of the common species and 3% of the beta diversity of the rare species. Our results indicate that studies carried out in the understory alone do not allow drawing conclusions regarding the biodiversity in the canopy strata, and thus regarding the overall community structure of xylobiont beetles in the canopy.Host-associated differentiation (HAD) refers to cases in which genetically distinct populations of a species (e.g., herbivores or natural enemies) preferentially reproduce or feed on different host species. In agroecosystems, HAD often results in unique strains or biotypes of pest species, each attacking different species of crops. However, HAD is not restricted to pest populations, and may cascade to the third trophic level, affecting host selection by natural enemies, and ultimately leading to HAD within natural enemy species. Natural enemy HAD may affect the outcomes of biological control efforts, whether classical, conservation, or augmentative. Here, we explore the potential effects of pest and natural enemy HAD on biological control in agroecosystems, with emphases on current knowledge gaps and implications of HAD for selection of biological control agents. Additionally, given the importance of semiochemicals in mediating interactions between trophic levels, we emphasize the role of chemical ecology in interactions between pests and natural enemies, and suggest areas of consideration for biological control. Overall, we aim to jump-start a conversation concerning the relevance of HAD in biological control by reviewing currently available information on natural enemy HAD, identifying challenges to incorporating HAD considerations into biological control efforts, and proposing future research directions on natural enemy selection and HAD.Cuckoo wasps (Chrysididae, Hymenoptera) are known for their parasitoid or cleptoparasitic life histories. Indeed, the biology of only a few species has been studied in detail and often only little more is known than the host species. By mimicking their hosts' cuticular hydrocarbon (CHC) profiles, species that parasitize single (or a few closely related) host species manage to deceive their hosts. However, the variability of the CHC profile in generalist cuckoo-wasp species is still unknown. Here, we used gas chromatography-mass spectrometry (GC-MS) and DNA barcoding to study intraspecific variation in cuticular hydrocarbons of one less host-specific species of cuckoo wasps, Trichrysis cyanea. Cuticular hydrocarbon (CHC) patterns were found to differ between males and females. Additionally, we found chemical polymorphism among females, which formed three distinct chemical subgroups characterized by different alkene patterns. A lack of divergence in the DNA barcoding region suggests that these different chemotypes do not represent cryptic species. Whether this intrasexual CHC-profile variation is an adaptation (mimicry) to different host species, or simply signaling the reproductive status, remains unclear.This study collects data from the literature and updates our Zelus renardii Kolenati, 1856 (Leafhopper Assassin Bug, LAB) prey knowledge. The literature consists of ca. 170 entries encompassing the years 1856 to 2021. This reduviid originated in the Nearctic region, but has entered and acclimatised in many Mediterranean countries. Our quantitative predation experiments-in the laboratory on caged plants plus field or environmental observations-confirm that LAB prefers a selected array of prey. Laboratory predation tests on living targets (Hemiptera, Coleoptera, Diptera, and Hymenoptera) agree with the literature. Zelus renardii prefers comparatively large, highly mobile, and readily available prey. LAB preferences on available hemipterans targets suggest that Zelus renardii is a good inundative biocontrol agent for Xylella fastidiosapauca ST53 infections. LAB also prey on other important olive pests, such as Bactrocera oleae. Therefore, Zelus renardii is a major integrated pest management (IPM) component to limit Xylella fastidiosa pandemics and other pest invasions.Microbes have the potential to affect multitrophic plant-insect-predator interactions. We examined whether cotton plants treated with potentially beneficial fungi affect interactions between cotton aphids Aphis gossypii and predatory lady beetles Hippodamia convergens. We used Y-tube olfactometer assays to test lady beetle behavioral responses to stimuli emitted by aphid-infested and non-infested cotton plants grown from seeds treated with either Phialemonium inflatum (TAMU490) or Chaetomium globosum (TAMU520) versus untreated control plants. We tested a total of 960 lady beetles (480 males and 480 females) that had been deprived of food for approximately 24 h. In the absence of any fungal treatments, males preferred stimuli from aphid-infested plants, and females spent more time associated with stimuli from aphid-infested versus non-infested plants. When fungal treatments were added, we observed that lady beetles preferred non-aphid-infested P. inflatum plants, and males responded slower to plants treated with P. inflatum in the absence of aphids. We found some evidence to suggest that lady beetle behavioral responses to plants might vary according to the fungal treatment but not strongly impact their use as part of an insect pest management strategy.An overview is given on several aspects of evolutionary history, ecology, host plant use, and pharmacophagy of Diabrotica spp. with a focus on the evolution of host plant breadth and effects of plant compounds on natural enemies used for biocontrol of pest species in the group. Recent studies on each aspect are discussed, latest publications on taxonomic grouping of Diabrotica spp., and new findings on variations in the susceptibility of corn varieties to root feeding beetle larvae are presented. The further need for in-depth research on biology and ecology of the large number of non-pest species in the genus is pointed out.Cyclopoid copepods have been applied successfully to limit populations of highly invasive Aedes albopictus mosquitoes that can transmit diseases of public health importance. However, there is concern that changes in certain mosquito traits, induced by exposure to copepod predation, might increase the risk of disease transmission. In this study, third instar Ae. albopictus larvae (focal individuals) were exposed to Megacyclops viridis predator cues associated with both the consumption of newly hatched mosquito larvae and attacks on focal individuals. The number of newly hatched larvae surrounding each focal larva was held constant to control for density effects on size, and the focal individual's day of pupation and wing length were recorded for each replicate. GPCR antagonist Exposing late instar Ae. albopictus to predation decreased their chances of surviving to adulthood, and three focal larvae that died in the predator treatment showed signs of melanisation, indicative of wounding. Among surviving focal Ae. albopictus, no significant difference in either pupation day or wing length was observed due to copepod predation. The absence of significant sublethal impacts from M. viridis copepod predation on surviving later stage larvae in this analysis supports the use of M. viridis as a biocontrol agent against Ae. albopictus.Over the past two decades, management practices within Louisiana soybean production have shifted. Successful application of an integrated pest management (IPM) strategy requires an understanding of how these changes have affected predator-pest dynamics. Surveys monitoring foliage-foraging arthropod populations in soybean took place across six locations within Louisiana over six years (2012-2014 and 2015-2018). Temporal associations of pest groups, defoliating and piercing-sucking, and predator groups relating to soybean phenology were observed. Additionally, soybean maturity groups (III, IV, and V) were also evaluated to delineate potential differences. Results indicated higher abundances of piercing-sucking pests compared to defoliating pests across both datasets (2012-2014 and 2015-2018). Pest groups were more abundant in later soybean reproductive periods, mainly attributed to Chrysodeixis includens and Piezodorus guildinii. Predator populations were mainly comprised of Araneae and Geocoridae throughout the survey periods. From 2015 to 2018, soybean growth had a significant effect on total predator abundance with more predators present at the pod-fill and soybean maturity stage. Correlations between total pest abundance and total predators exhibited a moderate positive linear relationship. Soybean maturity groups only influenced piercing-sucking pest abundance, with later maturing groups (IV and V) having higher numbers. Thus, control tools and tactics aimed at controlling late season pests should be modified to avoid reducing predator populations.There is a global concern over insect declines, including both species loss and population declines. In particular, declines of species, such as bees that anchor trophic interactions and shoulder many of the essential ecosystem services, have been the focus of broad public concern. However, our understanding of what characterizes those species that are lost because of declines over long periods is limited by a scarcity of comparative studies. We here compare the species composition from a collection of bees sampled over two decades (2000-2019) from the island of Lolland in Denmark, with a collection also sampled over two decades (1900-1919), but a century ago by Jørgensen and his contemporaries. We further test if (1) the probability that bee species that were sampled a century ago are also found today depends on their degree of floral specialization; (2) and use information from pollen samples from bees from the historical records to assess if certain floral resources have been lost. In total, 203 species were recorded in the two periods, but less than half, 92 species, occurred in both sampling periods.
My Website: https://www.selleckchem.com/products/ono-ae3-208.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team