Notes
Notes - notes.io |
oduction factor (final population/initial population) was 5.2. Furthermore, the morphological and molecular identification of the nematode was identical to the original samples. M. enterolobii has a broad host range (Philbrick et al. 2020). To our knowledge, this is the first report of M. enterolobii parasitizing O. hosiei worldwide. This finding expands the host range of this nematode.Meloidogyne enterolobii is a highly polyphagous tropical species of root knot nematode. It has been recorded to be causing major damage to a range of economically important crops and is increasingly recorded from new locations. The morphological similarity and overlap of characteristics with other commonly occurring species, especially M. incognita, has confused its diagnosis using morphometrics. Cassava (Manihot esculenta) is an important crop across the tropics, including Africa, where it is among the most important root and tuber crop for food security. Cassava can be heavily infected by root knot nematodes, which can incur heavy production losses. The main species known to affect cassava are M. incognita and M. javanica (Coyne and Affokpon, 2018). With the exception of one report of M. enterolobii morphologically identified from cassava roots during a survey in Brazil (Rosa et al., 2014), there is no record with molecular confirmation of it infecting the crop. In the absence of any molecular or isozyme cocipated that M. enterolobii has long been infecting, especially in West Africa, but has been overlooked due to its morphological similarity with M. incognita. Given the high reproductive ability of M. enterolobii on cassava and its highly aggressive nature on a range of crops, it is likely that it is causing, or will result in, high levels of losses on cassava in Africa.Zucchini (Cucurbita pepo) is an extensively cultivated and important economic cucurbit crop in China. In September 2018 and 2019, interveinal chlorosis and yellowing symptoms, suspected to be caused by either tomato chlorosis virus (ToCV; genus Crinivirus) or cucurbit chlorotic yellows virus (CCYV; genus Crinivirus) or by their co-infection, were observed on zucchini plants in a greenhouse in Shandong Province, China. The incidence of the disease in the greenhouse was 20-30%. To identify the causal agent(s) of the disease, leaf samples from 66 zucchini plants were collected in 14 greenhouses in the cities of Shouguang (n = 12), Dezhou (n = 36), Qingzhou (n = 12), and Zibo (n = 6) in Shandong. Four whitefly (Bemisia tabaci) samples and four symptomatic tomato samples were also collected from these sampling sites (one each for each site) because numerous whiteflies were observed in the sampling greenhouses and ToCV was previously reported in greenhouse tomato plants from these regions (Zhao et al. 2014). To det for one day. Three weeks after inoculation, all plants that were inoculated with either ToCV or CCYV displayed same symptoms as those observed in the greenhouses, whereas plants in the control group remained symptom free. RT-PCR analysis using ToCV- and CCYV-specific primers confirmed the infection of the plants with the respective virus, whereas control plants were free from the viruses. CCYV has been previously reported on zucchini in Algeria (Kheireddine et al. 2020), Iran (LR585225), and Cyprus (LT992910). To our knowledge, this is the first report of CCYV infection in zucchini in China, and moreover the first report of ToCV infection in zucchini in the world. Clearly, stringent management is needed to minimize the losses caused by these viruses in greenhouse operations in the region.Alliaria petiolata (Bieb.) Cavara & Grande (garlic mustard) is a biennial crucifer native to Europe and invasive in North America, where it outcompetes native plants in deciduous forests. In July 2021, powdery mildew was observed on A. petiolata in Frederick County, Maryland. Signs of the disease included white, tomentose mycelium producing abundant conidia (Fig S1). A majority of plants were affected, and severity ranged from the presence of small, discrete infections to complete colonization of leaves, stems, and ripening seed pods. Conidia from field collected leaves were transferred to disease-free A. petiolata for maintenance in a growth chamber at 20°C and 80% RH with a 12 hr photoperiod. Fungal morphology was recorded 30 days after this transfer. Appressoria were irregularly lobed, and conidiophores were straight and composed of 2-3 cells. Cylindrical to oblong conidia were produced singly in pseudochains of 2-6 (x̄ = 3), measured 39-64 by 18-29 (x̄ = 52 by 24) μm, had a length to width ratio greater tses, Syst. Mycol. Microbial. Lab., ARS, USDA. https//nt.ars-grin.gov/fungaldatabases/ Pastirčáková, K., et al. 2016. Mycol. Prog. 1536 White, T. J., et al. 1990. Page 315 in PCR Protocols. A Guide to Methods and Applications, Academic Press, San Diego. Keywords Alliaria petiolata, Erysiphe cruciferarum, garlic mustard, powdery mildew, invasive plant, biocontrol Funding and Disclaimer The author(s) declare no conflict of interest. This work was supported by USDA-ARS Appropriated Project Number 8044-22000-047-000-D. Mention of trade names or commercial products in this report is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity lender, provider, and employer.Biological collectives, like honeybee colonies, can make intelligent decisions and robustly adapt to changing conditions via intricate systems of excitatory and inhibitory signals. In this study, we explore the role of behavioural plasticity and its relationship to network size by manipulating honeybee colony exposure to an artificial inhibitory signal. As predicted, inhibition was strongest in large colonies and weakest in small colonies. This is ecologically relevant for honeybees, for which reduced inhibitory effects may increase robustness in small colonies that must maintain a minimum level of foraging and food stores. We discuss evidence for size-dependent plasticity in other types of biological networks.Thrombi form a micro-scale fibrin network consisting of an interlinked structure of nanoscale protofibrils, resulting in haemostasis. It is theorized that the mechanical effect of the fibrin clot is caused by the polymeric protofibrils between crosslinks, or to their dynamics on a nanoscale order. Despite a number of studies, however, it is still unknown, how the nanoscale protofibril dynamics affect the formation of the macro-scale fibrin clot and thus its mechanical properties. A mesoscopic framework would be useful to tackle this multi-scale problem, but it has not yet been established. We thus propose a minimal mesoscopic model for protofibrils based on Brownian dynamics, and performed numerical simulations of protofibril aggregation. Vorapaxar We also performed stretch tests of polymeric protofibrils to quantify the elasticity of fibrin clots. Our model results successfully captured the conformational properties of aggregated protofibrils, e.g., strain-hardening response. Furthermore, the results suggest that the bending stiffness of individual protofibrils increases to resist extension.The biophysical mechanism of the magnetic compass sensor in migratory songbirds is thought to involve photo-induced radical pairs formed in cryptochrome (Cry) flavoproteins located in photoreceptor cells in the eyes. In Cry4a-the most likely of the six known avian Crys to have a magnetic sensing function-four radical pair states are formed sequentially by the stepwise transfer of an electron along a chain of four tryptophan residues to the photo-excited flavin. In purified Cry4a from the migratory European robin, the third of these flavin-tryptophan radical pairs is more magnetically sensitive than the fourth, consistent with the smaller separation of the radicals in the former. Here, we explore the idea that these two radical pair states of Cry4a could exist in rapid dynamic equilibrium such that the key magnetic and kinetic properties are weighted averages. Spin dynamics simulations suggest that the third radical pair is largely responsible for magnetic sensing while the fourth may be better placed to initiate magnetic signalling particularly if the terminal tryptophan radical can be reduced by a nearby tyrosine. Such an arrangement could have allowed independent optimization of the essential sensing and signalling functions of the protein. It might also rationalize why avian Cry4a has four tryptophans while Crys from plants have only three.Life cycle processes of positive-strand (+)RNA viruses are broadly conserved across families, yet they employ different strategies to grow in the cell. Using a generalized dynamical model for intracellular (+)RNA virus growth, we decipher these life cycle determinants and their dependencies for several viruses and parse the effects of viral mutations, drugs and host cell permissivity. We show that poliovirus employs rapid replication and virus assembly, whereas the Japanese encephalitis virus leverages its higher rate of translation and efficient cellular reorganization compared to the hepatitis C virus. Stochastic simulations demonstrate infection extinction if all seeding (inoculating) viral RNA degrade before establishing robust replication critical for infection. The probability of this productive cellular infection, 'cellular infectivity', is affected by virus-host processes and defined by early life cycle events and viral seeding. An increase in cytoplasmic RNA degradation and delay in vesicular compartment formation reduces infectivity, more so when combined. Synergy among these parameters in limiting (+)RNA virus infection as predicted by our model suggests new avenues for inhibiting infections by targeting the early life cycle bottlenecks.The structural colours of certain insects are produced by three-dimensional periodic cuticle networks. The topology of the cuticle network is known to be based on the mathematically well-defined triply periodic minimal surface. In this paper, we report the discovery of an I-WP minimal-surface-based photonic crystal on the scale of a longhorn beetle. In contrast to gyroid or diamond surfaces, which are found in butterfly and weevil scales, respectively, the I-WP surface is an unbalanced minimal surface, wherein two subspaces separated by the surface are different in terms of shape and volume fraction. Furthermore, adjacent photonic crystal domains were observed to share a particular crystal plane as their domain boundary, indicating that they were developed as twin crystals. These structural features pose certain new questions regarding the development of biological photonic crystals. We also performed an optical analysis of the structural colour of the longhorn beetle and successfully explained the wavelength of reflection by the photonic bandgap of the I-WP photonic crystal.Fusarium oxysporum f. sp. vasinfectum VCG 0114 (race 4; i.e., FOV4) is an emerging pathogen that causes severe root rot and wilt of cotton. FOV4 is seed-borne, but the mode of seed invasion is uncertain. In an initial study, seeds in bolls that were puncture inoculated with FOV4 conidia when they were 25- or 30-days old became infected but remained viable. Because stink bugs can ingest and introduce bacterial and yeast pathogens into cotton bolls, we hypothesized that stink bugs may ingest and transmit FOV4. Southern green stink bugs and brown stink bugs were exposed to potato dextrose agar cultures of FOV4 and subsequently caged with cotton bolls to assess transmission potential. Both species fed on the cultures and acquired FOV4, and brown stink bugs transmitted FOV4 to cotton bolls. Thus, management of FOV4 may require management of stink bugs to mitigate the spread of the disease in cotton.
Homepage: https://www.selleckchem.com/products/vorapaxar.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team