NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Intergenerational transmission involving lockdown consequences: prognosis from the longer-run endurance involving COVID-19 in South america.
The death of microalgae plays an important role in ocean energy flow and material circulation. The existing methods for the identification of dead and living microalgae cells all have defects such as the need for staining and pre-treatment. In this work, a label-free method to identify living and dead algae cells based on digital holography microscopy and machine learning was designed. At the stage of model training, ten feature vectors were extracted from the holograms, and twelve classification models of machine learning algorithm were trained. Compared with the staining method results, the accuracy of this method can reach 94.8%. At the stage of field verification, the death rate calculated by this method was also consistent with staining method. The method proposed in this paper provides a new method for the study of marine microalgae death which has the advantages of label-free, non-invasive, high accuracy and potential for in-situ application.This study is the first study to determine beach litter pollution in the Eastern Mediterranean region of Turkey. The pollution of beach litter were seasonally evaluated in a selected beach in the East Mediterranean Sea between August 2019 and April 2020. Beach litter survey was carried out seasonally according to 'Guidance on Monitoring of Marine Litter in European Seas' published by European Marine Strategy Framework Directive Technical Subgroup on Marine Litter. During the study, a total of 10.717 items and 229.29 kg were collected. TVB-2640 The average litter abundance was 2.679 ± 0.418 items/m2 and 57.326 ± 7.165 g/m2. The results indicated that the most common type of litter were plastic and cloth/textile (84%) followed by paper/cardboard (56%), the unidentifiable (51%). Litter density showed significant seasonal differences with the highest in summer (P less then 0.05). Akyatan beach was classified as extremely dirty according to Clean Coast Index. It was observed that the litter in the region averagely consisted mostly of mixed packaging litter (23.75%), domestic litter (20%) and unclassified litter (16.2%) items. Our results show that the coast of Akyatan Lagoon exposed to a significant amount of marine litter pollution originated from land-based sources. This study provides further evidence that there is a significant litter pollution in the East Mediterranean Sea and that the main component are plastics, which pose a great treat to Mediterranean Sea environment.This study evaluated the protective effect of TiF4 varnish, after pre-treatment with proantocyanidin or chlorhexidine, on the progression of erosive dentin loss (EDL), under the presence or absence of the demineralized organic matrix (DOM). Bovine root dentin samples were eroded for 30 min (0.1% citric acid, pH 2.5) and the loss was measured by profilometry. Half of them were subjected to the DOM removal using collagenase for 4 days, while the other half remained immersed in water. The removal of DOM was checked by profilometry. Samples were divided into 24 groups (n = 15) according to the factors 1- With or without DOM; 2- Pre-treatment with 0.012% chlorhexidine gel, 10% proanthocyanidin gel or untreated for 1 min; 3-Final Treatment with TiF4 varnish, NaF varnish, placebo varnish or untreated for 6 h. The samples were submitted to a pH cycling for 5 days 0.1% citric acid (4 × 90s/day) and artificial saliva between the challenges. The final profile was obtained for the calculation of EDL (μm, three-way ANOVA/Tukey test). When DOM was preserved, the EDL was lower compared to the condition without DOM (7.08 ± 4.03 μm and 9.80 ± 3.79 μm, p less then 0.001, respectively), regardless of the treatments. The pre-treatment had no influence on the progression of EDL (p = 0.637), while the final treatment (TiF4 varnish only, 6.77 ± 4.08 μm) was effective in reducing the progression of EDL (NaF varnish 9.52 ± 4.02 μm; Placebo varnish 8.64 ± 4.06 μm and no treatment 8.80 ± 3.95 μm). It can be concluded that DOM has important protective effect on the progression of EDL. TiF4 was the unique treatment capable of reducing EDL progression, regardless of the pre-treatment of DOM.Reductive dechlorination, an efficient pathway for complete removal of organic chlorinated pollutants (OCPs), is commonly reported to be coupled to oxidation of methane (CH4) or methanogenesis in anaerobic environments. However, the relationship between dechlorination and CH4-associated bioprocesses is unclear. Based on the hypothesis that CH4 supplementation could facilitate OCP dechlorination, we investigated the role of CH4-associated bioprocesses in the self-purification of flooded lindane-spiked paddy soils. Four treatments were conducted for up to 28 days sterilized soil (S), sterilized soil + CH4 (SC), non-sterilized soil (NS), and non-sterilized soil + CH4 (NSC). Results indicated that both sterilization and addition of CH4 promoted lindane degradation and CH4 emissions in the flooded paddy soils. In the NS treatment, lindane had the lowest degradation rate when CH4 emissions were barely detected; while in the SC treatment, lindane had the highest degradation rate when CH4 achieved its highest emissions from anaerobic soil. Also, sterilization led to microbial diversity loss and functional recession, but increased ferrous ion [Fe(II)] concentrations compared to non-sterilized soils. Methanogenic communities and mcrA gene recovered faster than the majority of microorganisms (e.g., Fe bacteria, Bdellovibrionaceae, Rhizobiaceae, Dehalogenimonas) or functional genes (e.g., Dhc, Geo, narG, nirS). Collectively, we assume the enhanced removal of lindane may partly be due to both abiotic dechlorination promoted by chemical Fe redox processes and methanogenesis-derived biotic dechlorination. Revealing the coupling between dechlorination and CH4-associated bioprocesses is helpful to resolve both pollution remediation and mitigation of CH4 emissions in anaerobic contaminated sites.In the present study, starch based ZnO nancomposite (CSt-ZnO) was synthesized for the efficient removal of Pb(II) ions from aqueous medium. The structure and morphology of CSt-ZnO nancomposite was characterized using SEM, FTIR, TGA, BET, XPS and zeta potential measurements. The effect of contact time, pH, temperature and initial concentration of Pb(II) on the adsorption was studied. The optimum parameters for maximum Pb(II) removal were time-120 min; pH-6; temperature-318 K and Co-20 ppm. The maximum Langmuir adsorption capacity of CSt-ZnO nancomposite was 256.4 mg/g at 298 K. With increasing the temperature from 298 K to 318 K, the maximum adsorption quantity (qm) was improved from 256.4 to 476 mg/g which showed the endothermic nature of Pb(II) adsorption on CSt-ZnO nanocomposite. The sorption isotherm and kinetics model fitting studies, confirmed that data fit well to Freundlich isotherm and pseudo-first-order kinetics models, respectively. Thermodynamic studies inferred a spontaneous and endothermic nature of adsorption. Moreover, the adsorption capacity was 68% even after four adsorption-desorption cycles which revealed the reusable performance of CSt-ZnO was well. The antimicrobial activity of CSt-ZnO nanocomposite was also examined against S. aureus and E. coli.Nowadays, the worldwide search regarding renewable products from natural resources is increasing due to the toxicity of chemical counterparts. Biosurfactants are surface-active compounds that contain several physiological functions that are used in industries like food, pharmaceutical, petroleum and agriculture. Microbial lipopeptides have gained more attention among the researchers for their low toxicity, efficient action and good biodegradability when compared with other surfactants. Because of their versatile properties, lipopeptide compounds are utilized in the remediation of organic and inorganic pollutants. This review presented a depth evaluation of lipopeptide surfactants in the bioremediation process and their properties to maintain a sustainable environment. Lipopeptide can acts as a replacement to chemical surfactants only if they meet industrial-scale production and low-cost substrates. This review also demonstrated the production of a lipopeptide biosurfactant from a low-cost substrate and depicted plausible techniques to manage the substrate residues to determine its ability in the different applications particularly in the bioremediation process.We conducted multiple laboratory trials in a robust and repeatable experimental layout to study dense non-aqueous phase liquid (DNAPL) source zone formation. We extended an image processing and analysis framework to derive DNAPL saturation distributions from reflective optical imaging data, with volume balance deviations  0.04, especially for early stages of DNAPL migration. The common hypothesis that parameters defining the DNAPL-water retention curves are constant over time was not confirmed. Once DNAPL pooling started, the optimal fit in the parameter space was significantly different compared to the earlier DNAPL migration stages. We suspect more complex processes (e.g., capillary hysteresis, adsorption) to become relevant during pool formation. Our results reveal deficits in the grayscale-DNAPL saturation relationship definition and laboratory estimation of DNAPL-water retention curve parameters to overcome current limitations to describe DNAPL source zone formation.In this work, the hypothesis that thermoplastic polyurethane (TPU) microplastics (MPs) could form complex toxic pollution by absorbing both antibiotics and heavy metals simultaneously was proposed. The unique features of the adsorption of Cu(II) and oxytetracycline (OTC) on the pristine TPU and photo-aged (aged) TPU MPs in single and coexisting system were investigated, which included the kinetics, isothermal equilibrium and thermodynamics. The possibly synergistic or competitive effects between Cu(II) and OTC were also evaluated. The results showed that the adsorption process of Cu(II) and OTC could be described well by pseudo-second-order kinetic equation. The entire process could be divided into two stages internal diffusion and external diffusion. The Sips model could give good fitting for the isothermal adsorption equilibrium. The thermodynamic parameters depicted the endothermic nature of adsorptions and the process was spontaneous. In the coexisting system, synergistic or competitive effects depended critically on the ratio of concentrations (Cu(II) vs OTC). When the ratio was 11, Cu(II) significantly enhanced the adsorption of OTC, while OTC showed a weak effect on Cu(II) adsorption. The synergies could be attributed to the formation of Cu(II)-OTC complex and the bridging effect of Cu(II). Overall, the adsorption capacity of aged TPU was higher than that of pristine TPU, which was due to the differences in morphological characteristics and functional groups. FTIR studies revealed that ester carbonyl and acylamino groups in the TPU may be involved in the adsorption of Cu(II) and OTC.In-line coagulation-ultrafiltration is reliable to achieve the safe disposal of algae-laden water with alleviated membrane fouling. Poly(diallyl dimethyl ammonium chloride) (PDADMAC)-composited titanium xerogel (TXC) coagulant (abbreviated as P-T) was reported to possess better resistance to organic matter loads, and its mitigation effect on subsequent ultrafiltration efficiency towards algae-related pollutants was investigated in this study. Results showed that P-T coagulation effectively mitigated membrane fouling over pH 5.0-9.0, whereas TXC only worked better under acidic condition. Acidic environment facilitated algae and organic matter removal by pre-coagulation, thus greatly improving ultrafiltration efficiency. Under neutral and alkaline conditions, PDADMAC portion in P-T enhanced the coagulation removal towards algae and protein constituents, and simultaneously promoted the formation of flocs with unique porous structure, which jointly contributed to its high-efficient alleviation ability. Nevertheless, PDADMAC increased adhesion force between P-T coagulated flocs and membrane surface, thus slightly reducing the recovery rate of membrane flux at pH 5.
Here's my website: https://www.selleckchem.com/products/tvb-2640.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.