Notes
Notes - notes.io |
The effects of anthocyanins on in vitro and in vivo digestibility of rice starch were evaluated in this study. Then, the effects of anthocyanins on physicochemical properties of rice starch and on starch digestive enzymes (α-amylase and α-glucosidase) were investigated to understand the mechanism of the effects of anthocyanins on starch digestibility. Characterization of physicochemical properties of rice starch indicates a structural change due to the presence of anthocyanins, hindering its access to starch digestive enzymes. Besides, anthocyanins inhibited the activities of starch digestive enzymes by binding to their active sites, competing with the substrates and changing the secondary structure of the enzymes. The above stated changes of rice starch and starch digestive enzymes due to the presence of anthocyanins both contributed to retarding the digestibility of rice starch. This study could offer some theoretical guidance to the development of new type rice-based food with low glycemic index.Low-methoxy ammonium pectinate (APC) and polygalacturonic acid (PG) could be transformed heterogeneously in a catalyst-free system very efficiently to the corresponding polysaccharide (PS) hydrazides. The hydrazide formation proceeds even at room temperature efficiently and is almost independent of the reaction temperature in the range from 25 of up to 80°C. In contrast to a homogeneous reaction, the heterogeneous path is efficient considering the amount of hydrazine hydrate employed. The PS hydrazides obtained show no signs of degradation or side reactions that might occur due to the basicity of the hydrazine reagent used. The polygalacturonic acid hydrazide (PGH) obtained is nontoxic as revealed by a chicken egg test. Furthermore, preliminary studies indicate that the PS hydrazides synthesized possess good metal chelating abilities, especially high amount of lead (II) can be bound from an aqueous solution.Foam as a kind of burgeoning materials with laminated porous 3D structure was realized multifunctional application in diversified fields. In this work, we aimed to prepare a highly compressible and self-extinguishing multifunctional nanocomposite foam with anisotropic porous 3D structure through a green aqueous freeze-drying method. In order to address the inflammable property and brittleness issue of high-loading cellulose nanofiber foam, aramid nanofiber was incorporated into cellulose nanofiber framework, forming the multicomponent and multilevel honeycomb structure of the nanocomposite foam. Herein, the compression cycle properties of the nanocomposite foam could be significantly improved by adding 50 wt.% aramid nanofiber and at 20% stress recovered by 100 % even if cyclically compressed 200 times. The total heat release of the nanocomposite foam was as low as 2.12 MJ/m2 which also had low thermal conductivity about 28.8 mW/m · K. The ANF improved the flame retardancy of the composite foam.Seleno-polysaccharides have become a major topic for research owing to their high anti-oxidative capacity and immune-enhancing activities. In this study, galactomannan (GM) was isolated from Sesbania cannabina, and next modified using HNO3-Na2SeO3 method to obtain six varieties of seleno-galactomannans (SeGMs). FT-IR and GPC results showed the changes in chemical structure of SeGMs, indicating successful combination of selenium and GM. By measuring superoxide dismutase and malondialdehyde, the SeGMs showed a stronger protective effect against H2O2-induced oxidative damage in vitro than unmodified GM using macrophage RAW264.7 cell as a model, and the effect of SeGMs-14 was prominent. However, the selenylation modification did not show any obvious effect on the immunomodulatory activity of GM, as determined by the index of tumor necrosis factor-α, interleukin-6, and interleukin-1β. Overall, the prepared SeGMs from galactomannan could potentially serve as a dietary supplement of Se or an organic antioxidant.Arabinogalactan-proteins (AGPs), important signalling molecules of the plant cell wall, are structurally extensively investigated in angiosperms, but information on AGPs in gymnosperms is still limited. We characterized AGPs from the gymnosperms Ginkgo biloba, Ephedra distachya, Encephalartos longifolius and Cycas revoluta. The protein contents are comparable to that of angiosperm AGPs. Hydroxyproline is the site of linking the carbohydrate part and was detected in all AGPs with highest concentration in Cycas AGP (1.1 % of the AGP). NSC697923 Interestingly, with the exception of Cycas, all AGPs contained the monosaccharide 3-O-methylrhamnose not present in angiosperm polysaccharides. The carbohydrate moieties of Cycas and Ephredra showed the main components 1,3,6-linked galactose and terminal arabinose typical of angiosperm AGPs, whereas that of Ginkgo AGP was unique with 1,4-linked galactose as dominant structural element. Bioinformatic search for glycosyltransferases in Ginkgo genome also revealed a lower number of galactosyltransferases responsible for biosynthesis of the 1,3-Gal/1,6-Gal AGP backbone.In this study, a polysaccharide from marine alga Acanthophora spicifera (PAs) was isolated and structurally characterized. Its protective potential against chemically-induced gastric mucosa injury was evaluated. The gel permeation chromatography experiments and spectroscopy spectrum showed that PAs is a sulfated polysaccharide with a high molecular mass (6.98 × 105g/mol) and degree of sulfation of 1.23, exhibiting structural characteristic typical of an agar-type polysaccharide. Experimental results demonstrated that PAs reduced the hemorrhagic gastric injury, in a dose-dependent manner. Additionally, PAs reduced the intense gastric oxidative stress, measured by glutathione (GSH) and malondialdehyde (MDA) levels. PAs also prevented the reduction of mucus levels adhered to the gastric mucosa, promoted by the aggressive effect of ethanol. In summary, the sulfated polysaccharide from A. spicifera protected the gastric mucosa through the prevention of lipid peroxidation and enhanced the defense mechanisms of the gastric mucosa, suggesting as a promising functional food as gastroprotective agent.Optical brightening agents (OBAs) are commonly used in textile and paper industry to adjust product brightness and color appearence. Continuous production processes lead to short residence time of the dyes in the fiber suspension, making it necessary to understand the kinetics of adsorption. The interaction mechanisms of OBAs with cellulose are challenging to establish as the fibrous nature of cellulosic substrates complicates acquisition of real-time data. Here, we explore the real-time adsorption of different OBAs (di, tetra- and hexasulfonated compounds) onto different cellulose surfaces using surface plasmon resonance spectroscopy. Ionic strength, surface topography and polarity were varied and yielded 0.76-11.35 mg m-2 OBA on cellulose. We identified four independent mechanisms governing OBA-cellulose interactions. These involve the polarity of the cellulose surface, the solubility of the OBA, the ionic strength during adsorption and presence of bivalent cations such as Ca2+. These results can be exploited for process optimization in related industries as they allow for a simple adjustment and experimental testing procedures including performance assessment of novel OBAs.Inspired by antimicrobial peptides (AMP) which could alleviate drug resistance pressure, antimicrobial peptide mimics (AMPMs) were designed timely. Here, carboxymethyl cellulose (CMC) -based AMPMs were constructed by introducing different diamines on CMC effectively. Firstly, CMC was degraded to be oligomers with different molecular weights, followed by amination reactions with different diamines respectively. After protonation, a series of AMPMs with different structures were synthesized successfully. Their antibacterial effect has been evaluated by dynamic growth curves and microdilution method. The images snapped by the confocal laser scanning microscope and transmission electron microscope have fully proved its great lethality. And the antibacterial mechanism measured by flow cytometry analysis and zeta potential detection demonstrated that the destruction of membrane potential leads to bacteria death. The excellent blood compatibility and negligible drug resistance has also been confirmed. In addition, the synthesis method is simple and environmental-friendly.Damage to the cell membrane is an effective method to prevent drug resistance in plant fungal diseases. Here, we proposed a negative remodeling model of the cell membrane structure induced by the C-coordinated O-carboxymethyl chitosan Cu (II) complex (O-CSLn-Cu). FITC-labeled O-CSLn-Cu (FITC-O-CSLn-Cu) was first synthesized via a nucleophilic substitution reaction and confirmed by FT-IR. FITC-labeled O-CSLn-Cu could pass through the fungal cell membrane, as detected by confocal laser scanning microscopy (CLSM) coupled with fluorescein isothiocyanate (FITC)-fluorescence. O-CSLn-Cu treatment led to apparent morphological changes in the membranes of P. capsici Leonian and giant unilamellar vesicles (GUVs) by transmission electron microscopy (TEM). Then, we performed component analysis of the cell membrane from the P. capsici Leonian affected by O-CSLn-Cu with a particular interest in membrane physicochemical properties. Many unsaturated fatty acids (UFAs) and key enzymes promoting UFA synthesis of the cell membrane were downregulated. Similarly, a large number of membrane proteins responsible for substance transport and biochemical reactions were downregulated. Furthermore, O-CSLn-Cu treatments increased plasma membrane permeability with significant leakage of intercellular electrolytes, soluble proteins and sugars, and lipid peroxidation with decreasing membrane fluidity. Finally, aquaporin 10 was proven to be a potential molecular target sensitive to antimicrobial agents according to composition analysis of membrane structure and immunohistochemistry.Composite cellulose acetate (CA) membranes are widely used but their multiphase nature results in additive losses, poor mechanical strength, low chemical resistance and thermal stability, limiting their separation/purification yields. To overcome this, we fabricated monophasic hybrid membranes using a modified phase inversion technique, where tetraethylorthosilicate and 3-(aminopropyl)triethoxysilane were added to the CA casting solution. The resulting co-polymerization between CA, silanols and amine-functionalized silica groups, through sol-gel chemistry, was proved by ATR-FTIR (1118 cm-1, ν(SiOC)). The presence of propyl-amine groups increases the hydraulic permeability (3×), the rupture elongation (×1.5), and decreases the Young modulus (×1/2), due to the disruption of the CA-silica 3D network. For high propyl-amine contents this behaviour is reversed due to intensive cross-linking between CA-silica chains (decrease in 903 cm-1, ν(CH3COOC-)). The addition of silica- and amine-based structures to the CA framework increases the system degrees of freedom, opening the door to the design of new CA membranes.Chitosan-based hydrogels have been widely used for various biomedical applications due to their versatile properties such as biocompatibility, biodegradability, muco-adhesiveness, hemostatic effect and so on. However, the inherent rigidity and brittleness of pure chitosan hydrogels are still unmanageable, which has limited their potential use in biomaterial research. In this study, we developed in situ forming chitosan/PEG hydrogels with improved mechanical properties, using the enzymatic crosslinking reaction of horseradish peroxidase (HRP). The effect of PEG on physico-chemical properties of hybrid hydrogels was thoroughly elucidated by varying the content (0-100 %), molecular weight (4, 10 and 20 kDa) and geometry (linear, 4-arm) of the PEG derivatives. The resulting hydrogels demonstrated excellent hemostatic ability and are highly biocompatible in vivo, comparable to commercially available fibrin glue. We suggest these chitosan/PEG hybrid hydrogels with tunable physicochemical and tissue adhesive properties have great potential for a wide range of biomedical applications in the near future.
My Website: https://www.selleckchem.com/products/nsc697923.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team