Notes
![]() ![]() Notes - notes.io |
harge centres via long alkyl chains.Three-dimensional (3D) plasmonic nano-arrays can provide high surface-enhanced Raman scattering (SERS) sensitivity, good spectral uniformity and excellent reproducibility. However, it is still a challenge to develop a simple and efficient method for fabrication of 3D plasmonic nano-arrays with high SERS performance. Here we report a facile approach to construct ordered arrays of silver (Ag) nanoparticles-assembled spherical micro-cavities using polystyrene (PS) sphere template-assisted electrodeposition and post-growth. The electrodeposited small Ag nanoparticles grow into bigger stable nanoparticles during the post-growth process, which could significantly improve the SERS sensitivity. The Ag nanoparticles-assembled 3D micro-cavity array provides much more hotspots in the excitation laser beam-covered volume than the two-dimensional counterpart. The relative standard deviation (RSD) of 612 cm-1 peak of rhodamine 6G (R6G) was calculated to be 8%, and the RSD of the characteristic peak taken from substrates of different batches was less than 10%. The detectable lower concentration as low as 1 fM was achieved for an aqueous solution of R6G. Such SERS substrate also showed high sensitivity to thiram (fungicide) and paraquat (herbicide) in water with limits of detection of 0.067 nM and 2.5 nM respectively. Furthermore, it also demonstrated that SERS detection of pesticide residues on fruits can be realized, showing a potential application in rapid monitoring food safety.Developing high-activity bifunctional oxygen electrocatalysts to overcome the sluggish 4e- kinetics is an urgent challenge for rechargeable metal-air batteries. Here, we prepared a CoN nanosheet catalyst with rich nitrogen defects (CoN-Nd) through solvothermal and low-temperature nitridation. Notably, the study finds for the first time that only Co LDH materials can be mostly converted to CoN-Nd under the same nitriding conditions relative to different Co-based precursors. Experiments indicate that the constructed CoN-Nd catalyst exhibits preeminent electrocatalytic activities for both oxygen evolution reaction (η10 = 243 mV) and oxygen reduction reaction (JL = 5.2 mA cm-2). Moreover, the CoN-Nd-based Zinc-air battery showed a large power density of 120 mW cm-2 and robust stability over 260 cycles, superior to the state-of-art Pt/C + RuO2. The superior performance is attributed to a large number of defects formed by the disordered arrangement of local atoms on the catalyst that facilitate the formation of more active sites, and alternate array-like structures thereof improving electrolyte diffusion and gas emission.The formation in aqueous media of molecular nanoparticles from a bolaamphiphile (SucIleCsa) incorporating a disulfide moiety is described. The particles can be loaded efficiently with the lipophilic mitochondrial marker DiOC6(3), quenching its fluorescence, which is recovered upon reductive particle disassembly. DiOC6(3) transport into human colorectal adenocarcinoma cells (HT-29) is demonstrated using flow cytometry and confocal scanning fluorescence microscopy. A significant increase in intracellular fluorescence is observed when the cells are stimulated to produce glutathione (GSH). These new molecular nanoparticles can be considered a theranostic tool that simultaneously achieves targeted delivery of lipophilic substances and signals high levels of GSH.The oxygen evolution reaction (OER) is a crucial process for water splitting. Reducing overpotential is a great challenge because of four electrons transfer and slow kinetics compared to the hydrogen evolution reaction (HER). Highly efficient and stable OER catalyst with low-cost is important for industrial hydrogen production by water splitting. Here we report a simple approach to synthesize free-standing amorphous FexNi77-xNb3P13C7 with the nanoporous structure through electrochemical dealloying. The np-Fe50Ni27Nb3P13C7 exhibits remarkable OER catalytic activity with a low overpotential of 248 mV to achieve the current density of 10 mA cm-2 in 6 M KOH solution. Also, the np-Fe50Ni27Nb3P13C7 exhibits good long-term stability. The improved OER property is due to bimetallic synergy, decreased resistance of charge transfer, nanoporous structure, amorphous nature, and the generation of NiOOH during the OER process. The free-standing amorphous catalysts with nanoporous structure via electrodealloying method provide a promising approach to boost the performance of non-noble metal OER catalysts for the applications.Surface modification and composition control for nanomaterials are effective strategies for designing high-performance microwave absorbing materials (MWAMs). Herein, we have successfully fabricated Co-anchored and N-doped carbon layers on the surfaces of helical carbon nanocoils (CNCs) by wet chemical and pyrolysis methods, denoted as Co@N-Carbon/CNCs. It is found that pure CNCs show a very good microwave absorption performance under a filling ratio of only 6%, which is attributed to the uniformly dispersed conductive network and the cross polarization induced by the unique chiral and spiral morphology. The coating of N-doped carbon layers on CNCs further enriches polarization losses and the uniform anchoring of Co nanoparticles in these layers generates magnetic losses, which enhance the absorption ability and improve the low frequency performance. As compared with the pure CNCs-filling samples, the optimized Co@N-Carbon/CNCs-2.4 enhances the absorption capacity in the lower frequency range under the same thickness, and realizes the decreased thickness from 3.2 to 2.8 mm in the same X band, as well as the decreased thickness from 2.2 to 1.9 mm in the Ku band. Resultantly, a specific effective absorption wave value of 22 GHz g-1 mm-1 has been achieved, which enlightens the synthesis of ultrathin and light high-performance MWAMs.Tunable microwave absorption characteristics are highly desirable for industrial applications such as antenna, absorber, and biomedical diagnostics. Here, we report BiNdxCrxFe1-2xO3 (x = 0, 0.05, 0.10, 0.15) nanoparticles (NPs) with electromagnetic matching, which exhibit tunable magneto-optical and feasible microwave absorption characteristics for microwave absorber applications. The experimental results and theoretical calculations demonstrate the original bismuth ferrite (BFO) crystal structure, while Nd and Cr injection in the BFO structure may cause to minimize dielectric losses and enhance magnetization by producing interfacial defects in the spinel structure. Nd and Cr co-doping plays a key role in ordering the BFO crystal structure, resulting in improved microwave absorption characteristics. The BiNd0.10Cr0.10Fe1.8O3 (BNCF2) sample exhibits a remarkable reflection loss (RL) of -37.7 dB with a 3-mm thickness in the 10.15 GHz-10.30 GHz frequency region. Therefore, Nd and Cr doping in BFO nanoparticles opens a new pathway to construct highly efficient BFO-based materials for tunable frequency, stealth, and microwave absorber applications.This study quantified the interfacial forces associated with end-grafted, statistical (AB) co-polymers of sulfobetaine methacrylate (SBMA) and oligoethylene glycol methacrylate (OEGMA) (poly(SBMA-co-OEGMA)). Surface force apparatus measurements compared forces between mica and end-grafted copolymers containing 0, 40, or 80 mol% SBMA. Studies compared forces measured at low grafting density (weakly overlapping chains) and at high density (brushes). At high density, the range of repulsive forces did not change significantly with increasing SBMA content. By contrast, at low density, both the range and the amplitude of the repulsion increased with the percentage of SBMA in the chains. The ionic strength dependence of the film thickness and repulsive forces increased similarly with SBMA content, reflecting the increasing influence of charged monomers and their interactions with ions in solution. The forces could be described by models of simple polymers in good solvent. However, the forces and fitted model parameters change continuously with the SBMA content. The latter behavior suggests that ethyene glycol and sulfobetaine behave as non-interacting, miscible monomers that contribute independently to the interfacial forces. The results suggest that molecular scale properties of statistical poly (SBMA-co-OEGMA) films can be readily tuned by simple variation of the monomer ratios.Research on recycling has advanced across different disciplines, although the current knowledge about recycling behaviors at the corporate level remains elusive. A2ti-1 research buy While most studies on recycling are focused on households, there is no indication that people who recycle at home engage in similar behavior when at work. To understand how to facilitate recycling at work, this study investigates recycling behavior at work and its antecedents. The study adopts a sequential exploratory mixed method (MM) approach as its methodological framework, using semi-structured interviews and statistical analysis through structural equation modelling (SEM). According to the findings, factors such as types and volumes of waste, responsibility/accountability, personal control, recycling schemes, institutional supports, and group harmony contribute to recycling behavior in organizational settings. The study demonstrates contextual attributes' contribution, particularly organizational support and social context of recycling to employees' recycling behavior. For recycling to be normative at the corporate level, this MM study argues for the need to harmonize schemes within and across contexts. There is a need to install similar recycling schemes and facilities within and across waste generation contexts to reduce the recycling complexity and maintain consistency in recycling behavior. This study's findings could assist waste planners and policymakers in designing effective waste management schemes that would contribute to the circular economy initiatives. We further discussed the implication of the study.Growing municipal solid waste (MSW) generation is a source of environmental, economic, and social concerns, especially in developing world megacities where poor MSW practices prevail. Mexico City (CDMX), one of the world's largest megacities, daily produces ∼ 13,073 Mg of MSW whose management poses a tremendous challenge to local authorities and calls for additional research to conceive sound MSW strategies. This study evaluates the fossil energy use, GHG emissions, resource recovery, and economic cost dimensions of current and five alternative MSW paths in CDMX to compare their performance and identify more sustainable MSW practices for the megacity. Impacts and benefits from the MSW paths were modeled using 2018 MSW generation data, information supplied by local authorities, and literature values. Current MSW path consumes ∼ 387 MJfossil, generates ∼ 501 kg-CO2e, and costs ∼ 57 USD2018 per Mg of MSW managed while it only valorizes less then 33% of total MSW mostly via informal truck-picking. The alternative MSW paths considerably reduce GHG emissions (∼129-360 kg-CO2e/Mg) and enhance MSW valorization (∼47-88%) though, they entail higher fossil energy consumption (447-582 MJfossil/Mg) and, in general, higher cost expenditures (43-208 USD2018/Mg). Heavy reliance on landfilling, large GHG emissions, and low MSW valorization make current MSW path in CDMX unsustainable. Incineration-based MSW paths perform better in most aspects evaluated but their high costs seem prohibitive. Results suggest MSW paths featuring open windrow composting, mechanical-biological pre-treatment, material recovery facilities, and refuse-derived fuel production may be more appropriate to improve the sustainability of CDMX MSW management.
Read More: https://www.selleckchem.com/products/a2ti-1.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team