NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Progress Conditions as well as Mobile or portable Cycle Phase Modulate Stage Transition Temperature ranges throughout RBL-2H3 Derived Plasma Tissue layer Vesicles.
Our current big data landscape prompts us to develop new analytical skills in order to make the best use of the abundance of datasets at hand. Traditionally, SQL databases such as PostgreSQL have been the databases of choice, and newer graph databases such as Neo4j have been relegated to the analysis of social network and transportation datasets. In this paper, we conduct a side by side comparison of PostgreSQL (using SQL) and Neo4j (using Cypher) using the MIMIC-III patient database as a case study. We found that, while Neo4j is more time intensive to implement, its queries are less complex and have a faster runtime than comparable queries performed in PostgreSQL. This leads to the conclusion that while PostgreSQL is adequate as a database, Neo4j should be considered a viable contender for health data storage and analysis.Exposing and understanding the motivations of clinicians is an important step for building robust assistive agents as well as improving care. In this work, we focus on understanding the motivations for clinicians managing hypotension in the ICU. We model the ICU interventions as a batch, sequential decision making problem and develop a novel interpretable batch variant of Adversarial Inverse Reinforcement Learning algorithm that not only learns rewards which induce treatment policies similar to clinical treatments, but also ensure that the learned functional form of rewards is consistent with the decision mechanisms of clinicians in the ICU. We apply our approach to understanding vasopressor and IVfluid administration in the ICU and posit that this interpretability enables inspection and validation of the rewards robustly.This paper describes a paraphrasing approach to improve the performance of question answering (QA) for electronic health records (EHRs). QA systems for structured EHR data usually rely on semantic parsing, which aims to generate machine-understandable logical forms from free-text questions. Training semantic parsers requires large datasets of question-logical form (QL) pairs, which are labor-intensive to create. Considering the scarcity of large QL datasets in the clinical domain, we propose a framework for expanding an existing dataset using paraphrasing. We experiment with different heuristics for multiple sample sizes and iterations to assess the effect of adding paraphrasing to the task of semantic parsing. We found that adding paraphrases to an existing dataset based on TERTHRESHOLD scores results in an improved performance in the majority (74%) of the experimental runs. Hence, the proposed paraphrasing-based framework has the potential to improve the performance of QA systems using a limited set of existing QL annotations.Artificial intelligence enabled medical big data analysis has the potential to revolutionize medical practice from diagnosis and prediction of complex diseases to making recommendations and resource allocation decisions in an evidence-based manner. However, big data comes with big disclosure risks. To preserve privacy, excessive data anonymization is often necessary, leading to significant loss of data utility. In this paper, we develop a systematic data scrubbing procedure for large datasets when key variables are uncertain for re-identification risk assessment and assess the trade-off between anonymization of electronic health record data for sharing in support of open science and performance of machine learning models for early acute kidney injury risk prediction using the data. Results demonstrate that our proposed data scrubbing procedure can maintain good feature diversity and moderate data utility but raises concerns regarding its impact on knowledge discovery capability.Improving the consistency and reproducibility of bladder cancer prognoses necessitates the development of accurate, predictive prognostic models. Current methods of determining the prognosis of bladder cancer patients rely on manual decision-making, including factors with high intra- and inter-observer variability, such as tumor grade. To advance the long-term prediction of bladder cancer prognoses, we developed and tested a computational model to predict the 10-year overall survival outcome using population-based bladder cancer data, without considering tumor grade classification. The resulted predictive model demonstrated promising performance using a combination of clinical and molecular features, and was also strongly related to patient overall survival in Cox models. Our study suggests that machine learning methods can provide reliable long-term prognoses for bladder cancer patients, without relying on the less consistent tumor grade. If validated in clinical trials, this automated approach could guide and improve personalized management and treatment for bladder cancer patients.To explicitly learn patient representations from longitudinal clinical notes, we propose a hierarchical attention-based recurrent neural network (RNN) with greedy segmentation to distinguish between shorter and longer, more meaningful gaps between notes. The proposed model is evaluated for both a direct clinical prediction task (mortality) and as a transfer learning pre-training model to downstream evaluation (phenotype prediction of obesity and its comorbidities). Experimental results first show the proposed model with appropriate segmentation achieved the best performance on mortality prediction, indicating the effectiveness of hierarchical RNNs in dealing with longitudinal clinical text. Attention weights from the models highlight those parts of notes with the largest impact on mortality prediction and hopefully provide a degree of interpretability. Following the transfer learning approach, we also demonstrate the effectiveness and generalizability of pre-trained patient representations on target tasks of phenotyping.Developed to enable basic queries for cohort discovery, i2b2 has evolved to support complex queries. Little is known whether query sophistication - and the informatics resources required to support it - addresses researcher needs. In three years at our institution, 609 researchers ran 6,662 queries and requested re-identification of 80 patient cohorts to support specific studies. After characterizing all queries as "basic" or "complex" with respect to use of sophisticated query features, we found that the majority of all queries, and the majority of queries resulting in a request for cohort re-identification, did not use complex i2b2 features. Data domains that required extensive effort to implement saw relatively little use compared to common domains (e.g., diagnoses). These findings suggest that efforts to ensure the performance of basic queries using common data domains may better serve the needs of the research community than efforts to integrate novel domains or introduce complex new features.Precision medicine focuses on developing new treatments based on an individual's genetic, environmental, and lifestyle profile. While this data-driven approach has led to significant advances, retrieving information specific to a patient's condition has proved challenging for oncologists due to the large volume of data. In this paper, we propose the PRecIsion Medicine Robust Oncology Search Engine (PRIMROSE) for cancer patients that retrieves scientific articles and clinical trials based on a patient's condition, genetic profile, age, and gender. Our search engine utilizes Elasticsearch indexes for information storage and retrieval, and we developed a knowledge graph for query expansion in order to improve recall. Additionally, we experimented with machine learning and learning-to-rank components to the search engine and compared the results of the two approaches. selleck products Finally, we developed a front-facing ReactJS website and a REST API for connecting with our search engine. The development of this front-facing website allows for easy access to our system by healthcare providers.Data retention is a significant problem in the medical imaging domain. For example, resting-state functional magnetic resonance images (rs-fMRIs) are invaluable for studying neurodevelopment but are highly susceptible to corruption due to patient motion. The effects of patient motion can be reduced through post-acquisition techniques such as volume registration. Traditional volume registration minimizes the global differences between all volumes in the rs-fMRI sequence and a designated reference volume. We suggest using the spatiotemporal relationships between subsequent image volumes to inform the registration they are used initialize each volume registration to reduce local differences between volumes while minimizing global differences. We apply both the traditional and novel registration methods to a set of healthy human neonatal rs-fMRIs with significant motion artifacts (N=17). Both methods impacted the mean and standard deviation of the image sequences' correlation ratio matrices similarly; however, the novel framework was more effective in meeting gold standard motion thresholds.Chemical entity recognition is essential for indexing scientific literature in the MEDLINE database at the National Library of Medicine. However, the tool currently used to suggest terms for indexing, the Medical Text Indexer, was not originally conceived as a chemical recognition tool. It has instead been adapted to the task via its use of MetaMap and the addition of in-house patterns and rules. In order to develop a tool more suitable for chemical recognition, we have created a collection of 200 MEDLINE titles and abstracts annotated with genes, proteins, inorganic and organic chemicals, as well as other biological molecules. We use this collection to evaluate eleven chemical entity recognition systems, where we seek to identify a tool that effectively recognizes chemical entities for indexing and also performs well on chemical recognition beyond the indexing task. We observe the highest performance with a SciBERT ensemble.A substantial percentage of prostate cancer cases are overdiagnosed and overtreated due to the challenge in deter- mining aggressiveness. Multi-parametric MR is a powerful imaging technique to capture distinct characteristics of prostate lesions that are informative for aggressiveness assessment. However, manual interpretation requires a high level of expertise, is time-consuming, and significant inter-observer variation exists for radiologists. We propose a completely automated approach to assessing pixel-level aggressiveness of prostate cancer in multi-parametric MRI. Our model efficiently combines traditional computer vision and deep learning algorithms, to remove reliance on manual features, prostate segmentation, and prior lesion detection and identified optimal combinations of MR pulse sequences for assessment. Using ADC and DWI, our proposed model achieves ROC-AUC of 0.86 and ROC-AUC of 0.88 for the diagnosis of aggressive and non-aggressive prostate lesions, respectively. In performing pixel-level clas- sification, our model's classifications are easily interpretable and allow clinicians to infer localized analyses of the lesion.The Clinical Classifications Software (CCS), by grouping International Classification of Diseases (ICD), provides the capacity to better account for clinical conditions for payers, policy makers, and researchers to analyze outcomes, costs, and utilization. There is a critical need for additional research on application of CCS categories to validate the clinical condition representation and to prevent gaps in research. This study compared the event frequency and ICD codes of CCS categories with significant changes from the first three quarters of 2015 to 2016 using National Inpatient Sample data. A total of 63 of the 285 diagnostics CCS were identified with greater than 20% change, of which 32 had increased and 31 decreased over time. Due to the complexity associated with the transition from ICD-9 to ICD-10, more studies are needed to identify the reason for the changes to improve CCS use for ICD-10 and its comparability with ICD-9 based data.
Here's my website: https://www.selleckchem.com/products/lomeguatrib.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.