Notes
Notes - notes.io |
The networks and the models presented here might be good candidates for providing qualitative mechanisms of pancreatic cell fate decisions. These results can also provide some insight on choosing perturbation strategies for further experimental analysis.In this work, we study the problem of p-th moment global exponential stability for functional differential equations and scalar chaotic delayed equations under random impulsive effects. Meanwhile, the p-th moment global exponential synchronization for the proposed equations is also discussed, whereas the main results are proved by using Lyapunov function and Razumikhin technique. Furthermore, the impact of fixed and random time impulses are presented by applying the results to Mackey Glass blood cell production model and Ikeda bistable resonator model. Finally, the effectiveness of fixed and random impulses are depicted via graphical representations.COVID-19 is increasingly affecting human health and global economy. Understanding the fundamental mechanisms of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) is highly demanded to develop treatments for COVID-19. SARS-CoV and SARS-CoV-2 share 92.06% identity in their N protein RBDs' sequences, which results in very similar structures. However, the SARS-CoV-2 is more easily to spread. Utilizing multi-scale computational approaches, this work studied the fundamental mechanisms of the nucleocapsid (N) proteins of SARS-CoV and SARS-CoV-2, including their stabilities and binding strengths with RNAs at different pH values. Electrostatic potential on the surfaces of N proteins show that both the N proteins of SARS-CoV and SARS-CoV-2 have dominantly positive potential to attract RNAs. The binding forces between SARS-CoV N protein and RNAs at different distances are similar to that of SARS-CoV-2, both in directions and magnitudes. The electric filed lines between N proteins and RNAs are also similar for both SARS-CoV and SARS-CoV-2. The folding energy and binding energy dependence on pH revealed that the best environment for N proteins to perform their functions with RNAs is the weak acidic environment.A mathematical model to simulate the dynamics of colloidal particles on a drop interface in an applied electric field is presented. The model accounts for the electric field driven flow within the drop and suspending fluid, particle-particle electrostatic interaction, and the particle motion and rotation due to the induced flow and the applied electric field. The model predicts the formation of chains in the case of conducting particles or an undulating band around the equator in the case of dielectric particles. The model results are in agreement with recent experimental work. A study is presented on the impact of particle concentration and electric field strength on the collective motions of the particles. In the case of non-conducting particles, we find that in the presence of Quincke rotation, the amplitude of the undulations of the observed equatorial particle belt increases with particle concentration but decreases with electric field strength. We also show that the wavelength of the undulations appears independent of the applied field strength.Collagen alignment has shown clinical significance in a variety of diseases. For instance, vulvar lichen sclerosus (VLS) is characterized by homogenization of collagen fibers with increasing risk of malignant transformation. To date, a variety of imaging techniques have been developed to visualize collagen fibers. However, few works focused on quantifying the alignment quality of collagen fiber. To assess the level of disorder of local fiber orientation, the homogeneity index (HI) based on limiting entropy is proposed as an indicator of disorder. Our proposed methods are validated by verification experiments on Poly Lactic Acid (PLA) filament phantoms with controlled alignment quality of fibers. A case study on 20 VLS tissue biopsies and 14 normal tissue biopsies shows that HI can effectively characterize VLS tissue from normal tissue (P less then 0.01). The classification results are very promising with a sensitivity of 93% and a specificity of 95%, which indicated that our method can provide quantitative assessment for the alignment quality of collagen fibers in VLS tissue and aid in improving histopathological examination of VLS.The coronavirus disease 2019 (COVID-19) pandemic caused by the coronavirus strain has had massive global impact, and has interrupted economic and social activity. The daily confirmed COVID-19 cases in Saudi Arabia are shown to be affected by some explanatory variables that are recorded daily recovered COVID-19 cases, critical cases, daily active cases, tests per million, curfew hours, maximal temperatures, maximal relative humidity, maximal wind speed, and maximal pressure. Restrictions applied by the Saudi Arabia government due to the COVID-19 outbreak, from the suspension of Umrah and flights, and the lockdown of some cities with a curfew are based on information about COVID-15. The aim of the paper is to propose some predictive regression models similar to generalized linear models (GLMs) for fitting COVID-19 data in Saudi Arabia to analyze, forecast, and extract meaningful information that helps decision makers. In this direction, we propose some regression models on the basis of inverted exponential distodels.In magnetic resonance imaging (MRI), the scan time for acquiring an image is relatively long, resulting in patient uncomfortable and error artifacts. Fortunately, the compressed sensing (CS) and parallel magnetic resonance imaging (pMRI) can reduce the scan time of the MRI without significantly compromising the quality of the images. It has been found that the combination of pMRI and CS can better improve the image reconstruction, which will accelerate the speed of MRI acquisition because the number of measurements is much smaller than that by pMRI. In this paper, we propose combining a combined CS method and pMRI for better accelerating the MRI acquisition. In the combined CS method, the under-sampled data of the K-space is performed by taking both regular sampling and traditional random under-sampling approaches. MRI image reconstruction is then performed by using nonlinear conjugate gradient optimization. The performance of the proposed method is simulated and evaluated using the reconstruction error measure, the universal image quality Q-index, and the peak signal-to-noise ratio (PSNR). The numerical simulations confirmed that, the average error, the Q index, and the PSNR ratio of the appointed scheme are remarkably improved up to 59, 63, and 39% respectively as compared to the traditional scheme. For the first time, instead of using highly computational approaches, a simple and efficient combination of CS and pMRI is proposed for the better MRI reconstruction. These findings are very meaningful for reducing the imaging time of MRI systems.Three-dimensional (3D) sparse reconstruction of landslide topography based on unmanned aerial vehicle (UAV) images has been widely used for landslide monitoring and geomorphological analysis. In order to solve the isolated island phenomenon caused by multi-scale image matching, which means that there is no connection between the images of different scales, we herein propose a method that selects UAV image pairs based on image retrieval. In this method, sparse reconstruction was obtained via the sequential structure-from-motion (SfM) pipeline. First, principal component analysis (PCA) was used to reduce high-dimensional features to low-dimensional features to improve the efficiency of retrieval vocabulary construction. Second, by calculating the query depth threshold and discarding the invalid image pairs, we improved the efficiency of image matching. Third, the connected network of the dataset was constructed based on the initial matching of image pairs. The lost multi-scale image pairs were identified and matched through the image query between the connection components, which further improved the integrity of image matching. Our experimental results show that, compared with the traditional image retrieval method, the efficiency of the proposed method is improved by 25.9%.Voice pathologies are irregular vibrations produced due to vocal folds and various factors malfunctioning. In medical science, novel machine learning algorithms are applied to construct a system to identify disorders that occur invoice. This study aims to extract the features from the audio signals of four chosen diseases from the SVD dataset, such as laryngitis, cyst, non-fluency syndrome, and dysphonia, and then compare the four results of machine learning algorithms, i.e., SVM, Naïve Byes, decision tree and ensemble classifier. Raphin1 datasheet In this project, we have used a comparative approach along with the new combination of features to detect voice pathologies which are laryngitis, cyst, non-fluency syndrome, and dysphonia from the SVD dataset. The combination of specific 13 MFCC (mel-frequency cepstral coefficients) features along with pitch, zero crossing rate (ZCR), spectral flux, spectral entropy, spectral centroid, spectral roll-off, and short term energy for more accurate detection of voice pathologies. It is proven that the combination of features extracted gives the best product on the audio, which split into 10 ms. Four machine learning classifiers, SVM, Naïve Bayes, decision tree and ensemble classifier for the inter classifier comparison, give 93.18, 99.45,100 and 51%, respectively. Out of these accuracies, both Naïve Bayes and the decision tree show the most promising results with a higher detection rate. Naïve Bayes and decision tree gives the highest reported outcomes on the selected set of features in the proposed methodology. The SVM has also been concluded to be the commonly used voice condition identification algorithm.Sarcomas are a heterogeneous group of malignant mesenchymal neoplasms. This study aimed to investigate the immune-related prognostic gene signatures in the tumor microenvironment of sarcoma. The RNA-sequencing data and clinical phenotype data of 260 sarcoma samples and two normal samples were downloaded from The Cancer Genome Atla (TCGA) database. Tumor purity and immune cells infiltration were evaluated by Estimation of Stromal and Immune cells in Malignant Tumors using Expression data (ESTIMATE) deconvolution algorithm. Differentially expressed genes (DEGs) were screened in high vs. low immune score groups. Survival analysis was performed using Kaplan-Meier curve with log-rank test. Tumor infiltrating of immune cells was analyzed by Tumor Immune Estimation Resource (TIMER). High immune score and ESTIMATE score were associated with favorable prognosis. A total of 623 immune DEGs were screened. The majority of these genes (532 genes accounting for 85% of the DEGs) were up-regulated, and these genes were significantly enriched in various immune related biological processed and pathways, such as neutrophil activation, T cell activation, antigen processing and presentation. A total of 146 prognosis-related immune DEGs, and seven hub genes were identified, including B2M, HLA-DRB1, HLA-DRA, HLA-E, LCK, HLA-DPA1, and VAV1. Survival analysis showed that high expression of these genes was associated with a favorable prognosis. There were negative correlations between the expression of these hub genes and tumor purity, while positive correlations between expression of these hub genes and f infiltration levels of B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages and dendritic cells. These results help to stratify patients with different immune subtypes and help to design immunotherapy strategies for these patients in sarcoma.
Website: https://www.selleckchem.com/products/raphin1.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team