Notes
![]() ![]() Notes - notes.io |
In this study, surface seawater, sediment and zooplankton samples were collected from three different sampling stations in Marseille Bay (NW Mediterranean Sea) and were analyzed for both microplastics and organic plastic additives including seven phthalates (PAEs) and nine organophosphate esters (OPEs). PAE concentrations ranged from 100 to 527 ng L-1 (mean 191 ± 123 ng L-1) in seawater, 12-610 ng g-1 dw (mean 194 ± 193 ng g-1 dw) in sediment and 0.9-47 μg g-1 dw (mean 7.2 ± 10 μg g-1 dw) in zooplankton, whereas OPE concentrations varied between 9 and 1013 ng L-1 (mean 243 ± 327 ng L-1) in seawater, 13-49 ng g-1 dw (mean 25 ± 11 ng g-1 dw) in sediment and 0.4-4.6 μg g-1 dw (mean 1.6 ± 1.0 μg g-1 dw) in zooplankton. Microplastic counts in seawater ranged from 0 to 0.3 items m-3 (mean 0.05 ± 0.05 items m-3). We observed high fluctuations in contaminant concentrations in zooplankton between different sampling events. Epacadostat mouse However, the smallest zooplankton size class generally exhibited the highest PAE and OPE concentrations. Field-derived bioconcentration factors (BCFs) showed that certain compounds are prone to bioaccumulate in zooplankton, including some of the most widely used chlorinated OPEs, but with different intensity depending on the zooplankton size-class. The concentration of plastic additives in surface waters and the abundance of microplastic particles were not correlated, implying that they are not necessarily good indicators for each other in this compartment. This is the first comprehensive study on the occurrence and temporal variability of PAEs and OPEs in the coastal Mediterranean based on the parallel collection of water, sediment and differently sized zooplankton samples.Microcystins are cyanotoxins produced by many species of cyanobacteria. They are specific inhibitors of serine/threonine protein phosphatases and are phytotoxic to agricultural plants. This study used a formal meta-analysis to estimate the phytotoxicity and bioconcentration rates of agricultural plants exposed to microcystins, and the human health risk from consuming microcystin-contaminated plants. Among the 35 agricultural plants investigated, microcystins were most phytotoxic to durum wheat, corn, white mustard and garden cress. Leafy vegetables such as dill, parsley and cabbage could bioconcentrate ∼3 times more microcystins in their edible parts than other agricultural plants. Although the human health risk from ingesting microcystins could be greater for leafy vegetables than other agricultural plants, further work is needed to confirm bioconcentration of microcystins in realistic water-soil-plant environments. Still, we should avoid growing leafy vegetables, durum wheat and corn on agricultural land that is irrigated with microcystins-contaminated water and be attentive to the risk of microcystins contamination in the agricultural food supply.The water and sediments of urban rivers are spatially heterogeneous because of the influence of environmental and anthropogenic factors. However, the spatial and functional diversity of bacterial communities in urban river sediments are unclear. We investigated the spatial distribution of microbial compositions in sediments in Qingdao section of the Dagu River, and the effects of sediment physiochemical properties on the variation were explored. Among the seven heavy metals analyzed, only the average concentration of Cd significantly exceeded the safety limit for sediments. The detailed composition and spatial distribution of bacterial communities fluctuated substantially between sites along the river. Bacterial datasets were separated into three clusters according to the environmental characteristics of sampling areas (the urbanized, scenic, and intertidal zones). For the urbanized zone, Acidobacteria, Firmicutes, Gemmatimonadetes, Bacteroidetes, and Gammaproteobacteria were significantly enriched, implying the effects of human activity. In the intertidal zone, Alphaproteobacteria and Deltaproteobacteria were significantly enriched, which are associated with S redox processes, as in the marine environment. Variation partitioning analysis showed that the amount of variation independently explained by variables of Na, Al, total S and Zn was largest, followed by sediment nutrients, while heavy metals and pH explained independently 13% and 9% of the variance, respectively. Overall, microbial structures in the Dagu River exhibited spatial variation and functional diversity as a result of natural and anthropogenic factors. The results will enable the prediction of the changes in urban river ecosystems that maintain their ecological balance and health.Ground-level ozone (O3) and nitrogen (N) deposition are major environmental pollutants, often occurring concurrently. Ozone exposure- and flux-response relationships for tree biomass are used for regional O3 risk assessment. In order to investigate whether soil N addition affects stomatal O3 uptake of poplar, poplar saplings were exposed to treatment combinations of five O3 levels and four N addition levels. High N addition treatment reduced the accumulated stomatal O3 uptake in the leaf due to reduced maximum stomatal conductance (gs). Nitrogen addition also significantly reduced the steady-state light-saturated gs in August and September. Elevated O3 significantly reduced and N addition increased total plant biomass; however, there were no significant O3 × N interactions. The slopes of biomass-based O3 exposure- and flux-response relationships did not differ significantly among N treatments. The critical levels for a 5% biomass reduction were estimated at 15.4 ppm h and 17.1 mmol O3 m-2 projected leaf area (PLA) for Accumulated O3 exposure Over an hourly Threshold of 40 ppb (AOT40) and Phytotoxic Ozone Dose above a threshold 1 nmol O3 m-2 PLA s-1 (POD1). These results can facilitate the evaluations of O3 effect on the carbon-sink capacity and productivity of forest.Severe haze episodes in cold season in Beijing have been mitigated greatly during the last decade. However, the changes in aerosol chemistry as responses to the large reductions in gaseous precursors during the two phases of clean air action, i.e., phase Ⅰ (2013-2017) and phase Ⅱ (2018-2020), are less understood. Here we characterized such changes in cold season (January-March) by using five-year real-time aerosol particle composition measurements. Our results showed consistently large reductions for all chemical species from 2013 to 2020 with the largest decreases being chloride (95%) and organics (74%) followed by sulfate (69%), while the decreases in nitrate were comparatively small (44%). However, the contributions of sulfate were fairly stable despite the increased nitrate contributions from 18% in 2013 to 30% in 2020. Organic aerosol (OA) composition also changed significantly since 2018 with large increases in the contributions of secondary OA and corresponding decreases in primary OA from fossil fuel combustion and cooking emissions. The changes in aerosol chemistry were closely related to the different reductions in gaseous precursors, e.g., SO2 vs. NO2, and the enhanced secondary processes, e.g., the increases in O3, sulfur and nitrogen oxidation efficiency. Further, we found that the changes in aerosol chemistry in cold season during the phase Ⅱ of clean air action (2018-2020) started to slow down with relatively small changes in PM2.5 and secondary inorganic species. Our results point towards a future challenge in mitigating air pollution in cold season, and the need of more stringent and scientific strategies to control secondary aerosol pollution in an environment with enhanced oxidation capacity and high precursors.Anthropogenic activities in coastal marine ecosystems can lead to an increase in the abundance of potentially harmful microorganisms in the marine environment. To understand anthropogenic impacts on the marine microbiome, we first used publicly available microbial phylogenetic and functional data to establish a dataset of bacterial genera potentially related to pathogens that cause diseases (BGPRD) in marine organisms. Representatives of low-, medium- and highly impacted marine coastal environments were selected, and the abundance and composition of their microbial communities were determined by quantitative PCR and 16 S rRNA gene sequencing. In total, 72 BGPRD were cataloged, and 11, 36 and 37 BGPRD were found in low-, medium- and highly human-impacted ecosystems, respectively. The absolute abundance of BGPRD and the co-occurrence of antibiotic resistance genes (AGR) increased with the degree of anthropogenic perturbation in these ecosystems. Anthropogenically impacted coastal microbiomes were compositionally and functionally distinct from those of less impacted sites, presenting features that may contribute to adverse outcomes for marine macrobiota in the Anthropocene era.In this work, the novel technology was used to remove heavy metal from sludge. The coupled with biodegradable ethylenediamine disuccinic acid (EDDS) and approaching anode electrokinetic (AA-EK) technique was used to enhance heavy metal removing from sludge. Electric current, sludge and electrolyte characteristics, heavy metal removal efficiency and residual content distribution, and heavy metal fractions percentage of variation were evaluated during the electrokinetic remediation process. Results demonstrated that the coupled with EDDS and AA-EK technique obtain a predominant heavy metal removal efficiency, and promote electric current increasing during the enhanced electrokinetic remediation process. The catholyte electrical conductivity was higher than the anolyte, and electrical conductivity of near the cathode sludge achieved a higher value than anode sludge during the coupled with EDDS and AA-EK remediation process. AA-EK technique can produce a great number of H+, which caused the sludge acidification and pH decrease. Cu, Zn, Cr, Pb, Ni and Mn obtain the highest extraction efficiency after the coupled with EDDS and AA-EK remediation, which were 52.2 ± 2.57%, 56.8 ± 3.62%, 60.4 ± 3.62%, 47.2 ± 2.35%, 53.0 ± 3.48%, 54.2 ± 3.43%, respectively. Also, heavy metal fractions analysis demonstrated that the oxidizable fraction percentage decreased slowly after the coupled with EDDS and AA-EK remediation.Intensive aquaculture has largely changed the global phosphorus (P) flow and become one of the main reasons for the eutrophication of global aquatic ecosystem. Artificial planting submerged macrophytes has attracted enormous interest regarding the restoration of eutrophic lakes. However, few large-scale (>80 km2) studies have focused on the restoration of aquatic vegetation in the subtropical lakes, and the mechanism underlying the restrain of sediment P release by macrophytes remains unknown. In this study, field surveys and the diffusive gradients in thin films (DGT) technique were used to elucidate the effects of macrophytes on internal P loading control in a typical eutrophic aquacultural lake. Results showed that half of the P content in overlying water and sediments, particularly dissolved P in overlying water and calcium bound P (Ca-P) in sediment, were removed after restoration. Temperature, as well as dissolved oxygen (DO) and P concentration gradients near the sediment-water interface (SWI) jointly controlled the release of labile P from surface sediments.
My Website: https://www.selleckchem.com/products/epacadostat-incb024360.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team