NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

The actual subscriber base along with usefulness of online psychological actions remedy with regard to signs and symptoms of anxiety and depression through COVID-19.
Photoacoustic computed tomography (PACT) based on a full-ring ultrasonic transducer array is widely used for small animal wholebody and human organ imaging, thanks to its high in-plane resolution and full-view fidelity. However, spatial aliasing in full-ring geometry PACT has not been studied in detail. If the spatial Nyquist criterion is not met, aliasing in spatial sampling causes artifacts in reconstructed images, even when the temporal Nyquist criterion has been satisfied. In this work, we clarified the source of spatial aliasing through spatiotemporal analysis. We demonstrated that the combination of spatial interpolation and temporal filtering can effectively mitigate artifacts caused by aliasing in either image reconstruction or spatial sampling, and we validated this method by both numerical simulations and in vivo experiments.Image reconstruction in low-count PET is particularly challenging because gammas from natural radioactivity in Lu-based crystals cause high random fractions that lower the measurement signal-to-noise-ratio (SNR). In model-based image reconstruction (MBIR), using more iterations of an unregularized method may increase the noise, so incorporating regularization into the image reconstruction is desirable to control the noise. New regularization methods based on learned convolutional operators are emerging in MBIR. We modify the architecture of an iterative neural network, BCD-Net, for PET MBIR, and demonstrate the efficacy of the trained BCD-Net using XCAT phantom data that simulates the low true coincidence count-rates with high random fractions typical for Y-90 PET patient imaging after Y-90 microsphere radioembolization. Numerical results show that the proposed BCD-Net significantly improves CNR and RMSE of the reconstructed images compared to MBIR methods using non-trained regularizers, total variation (TV) and non-local means (NLM). Moreover, BCD-Net successfully generalizes to test data that differs from the training data. Improvements were also demonstrated for the clinically relevant phantom measurement data where we used training and testing datasets having very different activity distributions and count-levels.X-ray imaging is a wide-spread real-time imaging technique. Magnetic Resonance Imaging (MRI) offers a multitude of contrasts that offer improved guidance to interventionalists. As such simultaneous real-time acquisition and overlay would be highly favorable for image-guided interventions, e.g., in stroke therapy. One major obstacle in this setting is the fundamentally different acquisition geometry. MRI k -space sampling is associated with parallel projection geometry, while the X-ray acquisition results in perspective distorted projections. The classical rebinning methods to overcome this limitation inherently suffers from a loss of resolution. selleck chemicals llc To counter this problem, we present a novel rebinning algorithm for parallel to cone-beam conversion. We derive a rebinning formula that is then used to find an appropriate deep neural network architecture. Following the known operator learning paradigm, the novel algorithm is mapped to a neural network with differentiable projection operators enabling data-driven learning of the remaining unknown operators. The evaluation aims in two directions First, we give a profound analysis of the different hypotheses to the unknown operator and investigate the influence of numerical training data. Second, we evaluate the performance of the proposed method against the classical rebinning approach. We demonstrate that the derived network achieves better results than the baseline method and that such operators can be trained with simulated data without losing their generality making them applicable to real data without the need for retraining or transfer learning.In this paper a new statistical multivariate model for retinal Optical Coherence Tomography (OCT) B-scans is proposed. Due to the layered structure of OCT images, there is a horizontal dependency between adjacent pixels at specific distances, which led us to propose a more accurate multivariate statistical model to be employed in OCT processing applications such as denoising. Due to the asymmetric form of the probability density function (pdf) in each retinal layer, a generalized version of multivariate Gaussian Scale Mixture (GSM) model, which we refer to as GM-GSM model, is proposed for each retinal layer. In this model, the pixel intensities in each retinal layer are modeled with an asymmetric Bessel K Form (BKF) distribution as a specific form of the GM-GSM model. Then, by combining some layers together, a mixture of GM-GSM model with eight components is proposed. The proposed model is then easily converted to a multivariate Gaussian Mixture model (GMM) to be employed in the spatially constrained GMM denoising algorithm. The Q-Q plot is utilized to evaluate goodness of fit of each component of the final mixture model. The improvement in the noise reduction results based on the GM-GSM model, indicates that the proposed statistical model describes the OCT data more accurately than other competing methods that do not consider spatial dependencies between neighboring pixels.Multispectral photoacoustic tomography (PAT) is capable of resolving tissue chromophore distribution based on spectral un-mixing. It works by identifying the absorption spectrum variations from a sequence of photoacoustic images acquired at multiple illumination wavelengths. Due to multispectral acquisition, this inevitably creates a large dataset. To cut down the data volume, sparse sampling methods that reduce the number of detectors have been developed. However, image reconstruction of sparse sampling PAT is challenging because of insufficient angular coverage. During spectral un-mixing, these inaccurate reconstructions will further amplify imaging artefacts and contaminate the results. To solve this problem, we present the interlaced sparse sampling (ISS) PAT, a method that involved 1) a novel scanning-based image acquisition scheme in which the sparse detector array rotates while switching illumination wavelength, such that a dense angular coverage could be achieved by using only a few detectors; and 2) a corresponding image reconstruction algorithm that makes use of an anatomical prior image created from the ISS strategy to guide PAT image computation. Reconstructed from the signals acquired at different wavelengths (angles), this self-generated prior image fuses multispectral and angular information, and thus has rich anatomical features and minimum artefacts. A specialized iterative imaging model that effectively incorporates this anatomical prior image into the reconstruction process is also developed. Simulation, phantom, and in vivo animal experiments showed that even under 1/6 or 1/8 sparse sampling rate, our method achieved comparable image reconstruction and spectral un-mixing results to those obtained by conventional dense sampling method.Training deep neural networks usually requires a large amount of labeled data to obtain good performance. However, in medical image analysis, obtaining high-quality labels for the data is laborious and expensive, as accurately annotating medical images demands expertise knowledge of the clinicians. In this paper, we present a novel relation-driven semi-supervised framework for medical image classification. It is a consistency-based method which exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations, and leverages a self-ensembling model to produce high-quality consistency targets for the unlabeled data. Considering that human diagnosis often refers to previous analogous cases to make reliable decisions, we introduce a novel sample relation consistency (SRC) paradigm to effectively exploit unlabeled data by modeling the relationship information among different samples. Superior to existing consistency-based methods which simply enforce consistency of individual predictions, our framework explicitly enforces the consistency of semantic relation among different samples under perturbations, encouraging the model to explore extra semantic information from unlabeled data. We have conducted extensive experiments to evaluate our method on two public benchmark medical image classification datasets, i.e., skin lesion diagnosis with ISIC 2018 challenge and thorax disease classification with ChestX-ray14. Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.Brain imaging genetics becomes more and more important in brain science, which integrates genetic variations and brain structures or functions to study the genetic basis of brain disorders. The multi-modal imaging data collected by different technologies, measuring the same brain distinctly, might carry complementary information. Unfortunately, we do not know the extent to which the phenotypic variance is shared among multiple imaging modalities, which further might trace back to the complex genetic mechanism. In this paper, we propose a novel dirty multi-task sparse canonical correlation analysis (SCCA) to study imaging genetic problems with multi-modal brain imaging quantitative traits (QTs) involved. The proposed method takes advantages of the multi-task learning and parameter decomposition. It can not only identify the shared imaging QTs and genetic loci across multiple modalities, but also identify the modality-specific imaging QTs and genetic loci, exhibiting a flexible capability of identifying complex multi-SNP-multi-QT associations. Using the state-of-the-art multi-view SCCA and multi-task SCCA, the proposed method shows better or comparable canonical correlation coefficients and canonical weights on both synthetic and real neuroimaging genetic data. In addition, the identified modality-consistent biomarkers, as well as the modality-specific biomarkers, provide meaningful and interesting information, demonstrating the dirty multi-task SCCA could be a powerful alternative method in multi-modal brain imaging genetics.Magnetic Particle Imaging (MPI) is an emerging medical imaging modality that images the spatial distribution of superparamagnetic iron oxide (SPIO) nanoparticles using their nonlinear response to applied magnetic fields. In standard x-space approach to MPI, the image is reconstructed by gridding the speed-compensated nanoparticle signal to the instantaneous position of the field free point (FFP). However, due to safety limits on the drive field, the field-of-view (FOV) needs to be covered by multiple relatively small partial field-of-views (pFOVs). The image of the entire FOV is then pieced together from individually processed pFOVs. These processing steps can be sensitive to non-ideal signal conditions such as harmonic interference, noise, and relaxation effects. In this work, we propose a robust x-space reconstruction technique, Partial FOV Center Imaging (PCI), with substantially simplified pFOV processing. PCI first forms a raw image of the entire FOV by mapping MPI signal directly to pFOV center locations. The corresponding MPI image is then obtained by deconvolving this raw image by a compact kernel, whose fully-known shape solely depends on the pFOV size. We analyze the performance of the proposed reconstruction via extensive simulations, as well as imaging experiments on our in-house FFP MPI scanner. The results show that PCI offers a trade-off between noise robustness and interference robustness, outperforming standard x-space reconstruction in terms of both robustness against non-ideal signal conditions and image quality.
Homepage: https://www.selleckchem.com/products/1-nm-pp1.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.