Notes
![]() ![]() Notes - notes.io |
Window studies are gaining traction to assess (molecular) changes in short timeframes. Decreased tumor cell positivity for the proliferation marker Ki67 is often used as a proxy for treatment response. Immunohistochemistry (IHC)-based Ki67 on tissue from neo-adjuvant trials was previously reported to be predictive for long-term response to endocrine therapy for breast cancer in postmenopausal women, but none of these trials enrolled premenopausal women. Nonetheless, the marker is being used on this subpopulation. We compared pathologist assessed IHC-based Ki67 in samples from pre- and postmenopausal women in a neo-adjuvant, endocrine therapy focused trial (NCT00738777), randomized between tamoxifen, anastrozole, or fulvestrant. These results were compared with (1) IHC-based Ki67 scoring by AI, (2) mitotic figures, (3) mRNA-based Ki67, (4) five independent gene expression signatures capturing proliferation, and (5) blood levels for tamoxifen and its metabolites as well as estradiol. Upon tamoxifen, IHC-based Ki67 levels were decreased in both pre- and postmenopausal breast cancer patients, which was confirmed using mRNA-based cell proliferation markers. The magnitude of decrease of Ki67 IHC was smaller in pre- versus postmenopausal women. We found a direct relationship between post-treatment estradiol levels and the magnitude of the Ki67 decrease in tumors. These data suggest IHC-based Ki67 may be an appropriate biomarker for tamoxifen response in premenopausal breast cancer patients, but anti-proliferative effect size depends on estradiol levels.Mycobacterium tuberculosis is a clonal pathogen proposed to have co-evolved with its human host for millennia, yet our understanding of its genomic diversity and biogeography remains incomplete. Here we use a combination of phylogenetics and dimensionality reduction to reevaluate the population structure of M. tuberculosis, providing an in-depth analysis of the ancient Indo-Oceanic Lineage 1 and the modern Central Asian Lineage 3, and expanding our understanding of Lineages 2 and 4. We assess sub-lineages using genomic sequences from 4939 pan-susceptible strains, and find 30 new genetically distinct clades that we validate in a dataset of 4645 independent isolates. We find a consistent geographically restricted or unrestricted pattern for 20 groups, including three groups of Lineage 1. The distribution of terminal branch lengths across the M. tuberculosis phylogeny supports the hypothesis of a higher transmissibility of Lineages 2 and 4, in comparison with Lineages 3 and 1, on a global scale. We define an expanded barcode of 95 single nucleotide substitutions that allows rapid identification of 69 M. tuberculosis sub-lineages and 26 additional internal groups. Our results paint a higher resolution picture of the M. tuberculosis phylogeny and biogeography.Osteoclasts are bone-resorbing cells that play an essential role in homeostatic bone remodeling and pathological bone erosion. Macrophage colony stimulating factor (M-CSF) is abundant in rheumatoid arthritis (RA). GX15-070 However, the role of M-CSF in arthritic bone erosion is not completely understood. Here, we show that M-CSF can promote osteoclastogenesis by triggering the proteolysis of c-FMS, a receptor for M-CSF, leading to the generation of FMS intracellular domain (FICD) fragments. Increased levels of FICD fragments positively regulated osteoclastogenesis but had no effect on inflammatory responses. Moreover, myeloid cell-specific FICD expression in mice resulted in significantly increased osteoclast-mediated bone resorption in an inflammatory arthritis model. The FICD formed a complex with DAP5, and the FICD/DAP5 axis promoted osteoclast differentiation by activating the MNK1/2/EIF4E pathway and enhancing NFATc1 protein expression. Moreover, targeting the MNK1/2 pathway diminished arthritic bone erosion. These results identified a novel role of c-FMS proteolysis in osteoclastogenesis and the pathogenesis of arthritic bone erosion.Finding biological predictors and novel mechanisms underlying negative symptoms of schizophrenia is of significant importance given the lack of effective treatments. Increasing data support a role for metabolic dysfunction and inflammation in reward processing deficits in psychiatric illness. Herein, we found an interaction between lipids and inflammation as a predictor of worse negative symptom severity in individuals with schizophrenia. Future studies may seek to further elucidate this relationship and thereby reveal novel treatment targets for negative symptoms.Damage to the primary visual cortex (V1) causes homonymous visual-field loss long considered intractable. Multiple studies now show that perceptual training can restore visual functions in chronic cortically-induced blindness (CB). A popular hypothesis is that training can harness residual visual functions by recruiting intact extrageniculostriate pathways. Training may also induce plastic changes within spared regions of the damaged V1. Here, we link changes in luminance detection sensitivity with retinotopic fMRI activity before and after visual discrimination training in eleven patients with chronic, stroke-induced CB. We show that spared V1 activity representing perimetrically-blind locations prior to training predicts the amount of training-induced recovery of luminance detection sensitivity. Additionally, training results in an enlargement of population receptive fields in perilesional V1, which increases blind-field coverage and may support further recovery with subsequent training. These findings uncover fundamental changes in perilesional V1 cortex underlying training-induced restoration of conscious luminance detection sensitivity in CB.Pancreatic cancer (PC) is one of the leading causes of cancer-related death worldwide due to delayed diagnosis and limited treatments. More than 90% of all pancreatic cancers are pancreatic ductal adenocarcinoma (PDAC). Extensive communication between tumour cells and other cell types in the tumour microenvironment have been identified which regulate cancer hallmarks during pancreatic tumorigenesis via secretory factors and extracellular vesicles (EVs). The EV-capsuled factors not only facilitate tumour growth locally, but also enter circulation and reach distant organs to construct a pre-metastatic niche. In this review, we delineate the key factors in pancreatic ductal adenocarcinoma derived EVs that mediate different tumour processes. Also, we highlight the factors that are related to the crosstalk with cancer stem cells/cancer-initiating cells (CSC/CIC), the subpopulation of cancer cells that can efficiently metastasize and resist currently used chemotherapies. Lastly, we discuss the potential of EV-capsuled factors in early diagnosis and antitumour therapeutic strategies.Tumors can use metabolic reprogramming to survive nutrient stress. Epigenetic regulators play a critical role in metabolic adaptation. Here we screened a sgRNA library to identify epigenetic regulators responsible for the vulnerability of colorectal cancer (CRC) cells to glucose deprivation and found that more EZH2-knockout cells survived glucose deprivation. Then, we showed that EZH2 expression was significantly downregulated in response to glucose deprivation in a glucose-sensitive CRC cell line, and EZH2-knockdown cells were more resistant to glucose deprivation. Mechanistically, EZH2 deficiency upregulated the expression of glutaminase (GLS) and promoted the production of glutamate, which in turn led to increased synthesis of intracellular glutathione (GSH) and eventually attenuated the reactive oxygen species (ROS)-mediated cell death induced by glucose deprivation. Although EZH2 functioned as an oncogene in cancer progression and EZH2 knockout abolished colorectal cancer development in a mouse model, here we revealed a mechanistic link between EZH2 and metabolic reprogramming via the direct regulation of GLS expression and observed a negative correlation between EZH2 and GLS expression in colorectal cancer tissues. These findings further confirmed the importance of heterogeneity, provided an explanation for the clinical tolerance of cancer cells to EZH2 inhibitors from the perspective of metabolism, and proposed the possibility of combining EZH2 inhibitors and glutamine metabolism inhibitors for the treatment of cancer.Deconvolution of bulk gene expression profiles into the cellular components is pivotal to portraying tissue's complex cellular make-up, such as the tumor microenvironment. However, the inherently variable nature of gene expression requires a comprehensive statistical model and reliable prior knowledge of individual cell types that can be obtained from single-cell RNA sequencing. We introduce BLADE (Bayesian Log-normAl Deconvolution), a unified Bayesian framework to estimate both cellular composition and gene expression profiles for each cell type. Unlike previous comprehensive statistical approaches, BLADE can handle > 20 types of cells due to the efficient variational inference. Throughout an intensive evaluation with > 700 simulated and real datasets, BLADE demonstrated enhanced robustness against gene expression variability and better completeness than conventional methods, in particular, to reconstruct gene expression profiles of each cell type. In summary, BLADE is a powerful tool to unravel heterogeneous cellular activity in complex biological systems from standard bulk gene expression data.Persistent hepatitis C virus (HCV) infection is a major cause of chronic liver disease, worldwide. With the development of direct-acting antivirals, treatment of chronically infected patients has become highly effective, although a subset of patients responds less well to therapy. Sofosbuvir is a common component of current de novo or salvage combination therapies, that targets the HCV NS5B polymerase. We use pre-treatment whole-genome sequences of HCV from 507 patients infected with HCV subtype 3a and treated with sofosbuvir containing regimens to detect viral polymorphisms associated with response to treatment. We find three common polymorphisms in non-targeted HCV NS2 and NS3 proteins are associated with reduced treatment response. These polymorphisms are enriched in post-treatment HCV sequences of patients unresponsive to treatment. They are also associated with lower reductions in viral load in the first week of therapy. Using in vitro short-term dose-response assays, these polymorphisms do not cause any reduction in sofosbuvir potency, suggesting an indirect mechanism of action in decreasing sofosbuvir efficacy. The identification of polymorphisms in NS2 and NS3 proteins associated with poor treatment outcomes emphasises the value of systematic genome-wide analyses of viruses in uncovering clinically relevant polymorphisms that impact treatment.While their function, as immune checkpoint molecules, is well known, B7-family proteins also function as regulatory molecules in bone remodeling. B7-H3 is a receptor ligand of the B7 family that functions primarily as a negative immune checkpoint. While the regulatory function of B7-H3 in osteoblast differentiation has been established, its role in osteoclast differentiation remains unclear. Here we show that B7-H3 is highly expressed in mature osteoclasts and that B7-H3 deficiency leads to the inhibition of osteoclastogenesis in human osteoclast precursors (OCPs). High-throughput transcriptomic analyses reveal that B7-H3 inhibition upregulates IFN signaling as well as IFN-inducible genes, including IDO. Pharmacological inhibition of type-I IFN and IDO knockdown leads to reversal of B7-H3-deficiency-mediated osteoclastogenesis suppression. Although synovial-fluid macrophages from rheumatoid-arthritis patients express B7-H3, inhibition of B7-H3 does not affect their osteoclastogenesis. Thus, our findings highlight B7-H3 as a physiologic positive regulator of osteoclast differentiation and implicate type-I IFN-IDO signaling as its downstream mechanism.
Website: https://www.selleckchem.com/products/Obatoclax-Mesylate.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team