NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

May ovarian problematic vein embolization trigger more damage than good?
The experimental results indicate that the FER controlled by the proposed AFA-DNN can accurately track various trajectories and that the AFA-DNN has a better antinoise interference ability, higher convergence accuracy, and faster convergence speed than conventional methods. The convergence speed of the AFA-DNN is increased by a factor of 4.22 by using the adaptive gains. Experiments also indicate that the AFA-DNN remains well functioning under various noise disturbances (such as constant, periodic, linear, and Gaussian noise).The existing multiview clustering models learn a consistent low-dimensional embedding either from multiple feature matrices or multiple similarity matrices, which ignores the interaction between the two procedures and limits the improvement of clustering performance on multiview data. To address this issue, a bidirectional probabilistic subspaces approximation (BPSA) model is developed in this article to learn a consistently orthogonal embedding from multiple feature matrices and multiple similarity matrices simultaneously via the disturbed probabilistic subspace modeling and approximation. A skillful bidirectional fusion strategy is designed to guarantee the parameter-free property of the BPSA model. Two adaptively weighted learning mechanisms are introduced to ensure the inconsistencies among multiple views and the inconsistencies between bidirectional learning processes. To solve the optimization problem involved in the BPSA model, an iterative solver is derived, and a rigorous convergence guarantee is provided. Extensive experimental results on both toy and real-world datasets demonstrate that our BPSA model achieves state-of-the-art performance even if it is parameter-free.Motivated by recent innovations in biologically inspired neuromorphic hardware, this article presents a novel unsupervised machine learning algorithm named Hyperseed that draws on the principles of vector symbolic architectures (VSAs) for fast learning of a topology preserving feature map of unlabeled data. It relies on two major operations of VSA, binding and bundling. The algorithmic part of Hyperseed is expressed within the Fourier holographic reduced representations (FHRR) model, which is specifically suited for implementation on spiking neuromorphic hardware. The two primary contributions of the Hyperseed algorithm are few-shot learning and a learning rule based on single vector operation. These properties are empirically evaluated on synthetic datasets and on illustrative benchmark use cases, IRIS classification, and a language identification task using the n -gram statistics. The results of these experiments confirm the capabilities of Hyperseed and its applications in neuromorphic hardware.The emerging matrix learning methods have achieved promising performances in electroencephalogram (EEG) classification by exploiting the structural information between the columns or rows of feature matrices. Due to the intersubject variability of EEG data, these methods generally need to collect a large amount of labeled individual EEG data, which would cause fatigue and inconvenience to the subjects. Insufficient subject-specific EEG data will weaken the generalization capability of the matrix learning methods in neural pattern decoding. To overcome this dilemma, we propose an adaptive multimodel knowledge transfer matrix machine (AMK-TMM), which can selectively leverage model knowledge from multiple source subjects and capture the structural information of the corresponding EEG feature matrices. Specifically, by incorporating least-squares (LS) loss with spectral elastic net regularization, we first present an LS support matrix machine (LS-SMM) to model the EEG feature matrices. To boost the generalization capability of LS-SMM in scenarios with limited EEG data, we then propose a multimodel adaption method, which can adaptively choose multiple correlated source model knowledge with a leave-one-out cross-validation strategy on the available target training data. We extensively evaluate our method on three independent EEG datasets. Experimental results demonstrate that our method achieves promising performances on EEG classification.Recently, self-supervised video object segmentation (VOS) has attracted much interest. However, most proxy tasks are proposed to train only a single backbone, which relies on a point-to-point correspondence strategy to propagate masks through a video sequence. Due to its simple pipeline, the performance of the single backbone paradigm is still unsatisfactory. Instead of following the previous literature, we propose our self-supervised progressive network (SSPNet) which consists of a memory retrieval module (MRM) and collaborative refinement module (CRM). The MRM can perform point-to-point correspondence and produce a propagated coarse mask for a query frame through self-supervised pixel-level and frame-level similarity learning. The CRM, which is trained via cycle consistency region tracking, aggregates the reference & query information and learns the collaborative relationship among them implicitly to refine the coarse mask. Furthermore, to learn semantic knowledge from unlabeled data, we also design two novel mask-generation strategies to provide the training data with meaningful semantic information for the CRM. Extensive experiments conducted on DAVIS-17, YouTube-VOS and SegTrack v2 demonstrate that our method surpasses the state-of-the-art self-supervised methods and narrows the gap with the fully supervised methods.Since the superpixel segmentation method aggregates pixels based on similarity, the boundaries of some superpixels indicate the outline of the object and the superpixels provide prerequisites for learning structural-aware features. It is worthwhile to research how to utilize these superpixel priors effectively. In this work, by constructing the graph within superpixel and the graph among superpixels, we propose a novel Multi-level Feature Network (MFNet) based on graph neural network with the above superpixel priors. In our MFNet, we learn three-level features in a hierarchical way from pixel-level feature to superpixel-level feature, and then to image-level feature. To solve the problem that the existing methods cannot represent superpixels well, we propose a superpixel representation method based on graph neural network, which takes the graph constructed by a single superpixel as input to extract the feature of the superpixel. To reflect the versatility of our MFNet, we apply it to an image-level prediction task and a pixel-level prediction task by designing different prediction modules. An attention linear classifier prediction module is proposed for image-level prediction tasks, such as image classification. An FC-based superpixel prediction module and a Decoder-based pixel prediction module are proposed for pixel-level prediction tasks, such as salient object detection. Our MFNet achieves competitive results on a number of datasets when compared with related methods. The visualization shows that the object boundaries and outline of the saliency maps predicted by our proposed MFNet are more refined and pay more attention to details.Current survival analysis of cancer confronts two key issues. While comprehensive perspectives provided by data from multiple modalities often promote the performance of survival models, data with inadequate modalities at testing phase are more ubiquitous in clinical scenarios, which makes multi-modality approaches not applicable. Additionally, incomplete observations (i.e., censored instances) bring a unique challenge for survival analysis, to tackle which, some models have been proposed based on certain strict assumptions or attribute distribution that, however, may limit their applicability. In this paper, we present a mutual-assistance learning paradigm for standalone mono-modality survival analysis of cancers. The mutual assistance implies the cooperation of multiple components and embodies three aspects 1) it leverages the knowledge of multi-modality data to guide the representation learning of an individual modality via mutual-assistance similarity and geometry constraints; 2) it formulates mutual-assistance regression and ranking functions independent of strong hypotheses to estimate the relative risk, in which a bias vector is introduced to efficiently cope with the censoring problem; 3) it integrates representation learning and survival modeling into a unified mutual-assistance framework for alleviating the requirement of attribute distribution. Extensive experiments on several datasets demonstrate our method can significantly improve the performance of mono-modality survival model.Traditional multi-view learning methods often rely on two assumptions ( i) the samples in different views are well-aligned, and ( ii) their representations obey the same distribution in a latent space. Unfortunately, these two assumptions may be questionable in practice, which limits the application of multi-view learning. In this work, we propose a differentiable hierarchical optimal transport (DHOT) method to mitigate the dependency of multi-view learning on these two assumptions. Given arbitrary two views of unaligned multi-view data, the DHOT method calculates the sliced Wasserstein distance between their latent distributions. Based on these sliced Wasserstein distances, the DHOT method further calculates the entropic optimal transport across different views and explicitly indicates the clustering structure of the views. Accordingly, the entropic optimal transport, together with the underlying sliced Wasserstein distances, leads to a hierarchical optimal transport distance defined for unaligned multi-view data, which works as the objective function of multi-view learning and leads to a bi-level optimization task. Moreover, our DHOT method treats the entropic optimal transport as a differentiable operator of model parameters. It considers the gradient of the entropic optimal transport in the backpropagation step and thus helps improve the descent direction for the model in the training phase. We demonstrate the superiority of our bi-level optimization strategy by comparing it to the traditional alternating optimization strategy. The DHOT method is applicable for both unsupervised and semi-supervised learning. Experimental results show that our DHOT method is at least comparable to state-of-the-art multi-view learning methods on both synthetic and real-world tasks, especially for challenging scenarios with unaligned multi-view data.
Due to the COVID-19 pandemic, wearing a face mask has become an essential measure to reduce the rate of virus spreading. The aim of the study was to assess the effect of wearing a surgical face mask for a short period on the tear film parameters in subjects with a high body mass index (BMI).

Twenty-five females with a high BMI (31.4 ± 5.5 kg/m2) aged 18-35 years (22.7 ± 4.6 years) participated in the study. In addition, a control group consisting of 25 females (23.0 ± 6.7 years) with a high BMI (29.9 ± 4.1 kg/m2) participated in the study in which no mask was worn. The standardized patient evaluation of eye dryness (SPEED) questionnaire was completed first, followed by the phenol red thread (PRT) and tear ferning (TF) tests, before wearing the face mask. selleck chemical The subjects wore the face mask for 1 hour, and the measurements were performed again immediately after its removal. For the control group, the measurements were performed twice with one hour gap.

Significant (Wilcoxon test, p < 0.05) differences were found between the SPEED scores (p = 0.
Here's my website: https://www.selleckchem.com/products/fg-4592.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.