Notes
Notes - notes.io |
Furthermore, the miR-92a and miR-26b expression levels were significantly reduced while miR-146a and miR124 expression levels had no significant changes in the NP samples. The RT-qPCR results indicate that the miRNAs were differentially expressed in CRS patients and various inflammation severities could lead to this difference. The results from this study may further reveal the relationship between miRNA expressions and inflammation. These results can also provide an important mechanism (primitive data) on the occurrence of chronic sinusitis and nasal polyps.Polyethylene glycol (PEG) has promoted the prospective applications of nanoparticles (NPs) in cancer therapy. PEG is used to evade the immune system allowing NPs accumulation within the tumor using its leaky vasculature. However, the cellular uptake of PEG-coated (PEGylated) NPs is lower in comparison to non-PEGylated NPs since PEG minimizes surface binding of ligands that mediate NP endocytosis. For improved outcome in therapeutic applications, it is necessary to enhance the uptake of PEGylated NPs. We added a peptide containing an integrin binding domain known as the RGD sequence to the NP surface in addition to PEG. We used gold NPs (GNPs) of sizes 14, 50, and 70 nm in this study. Our in vitro data for HeLa cells show enhanced uptake for NPs coated with both PEG and the peptide in comparison to PEGylated GNPs. NPs of size 50 nm had the highest uptake among the three sizes for all GNP surfaces. A similar size-dependent trend was observed for MDA-MB-231 cells for as-made GNPs with lower uptake in comparison to HeLa cells. However, only 14 nm peptide-modified PEGylated NPs had enhanced uptake. Hence, NP uptake was found dependent on cell type and NP surface properties. A properly designed NP system with both PEG and cell membrane targeting peptides can be used to protect it from the immune system and promote internalization by cells upon entry into tumor environment.Investigation of plasma-organic materials interaction in aqueous solution with atmospheric pressure plasmas have been carried out. Degradation of methylene blue (MB) in aqueous solution via atmospheric pressure He plasma exposure through gas/liquid interface have been investigated. The optical emission spectrum shows considerable emissions of He lines and the emission of O, OH and N radicals attributed to dissociation of water (H2O) and air has been confirmed. Structure variation of MB in solution treated with the atmospheric-pressure He plasma has been measured by Fourier transform infrared spectroscopy (FT-IR). The results obtained from FT-IR analysis show degradation of MB in solution treated with the atmospheric-pressure He plasma. The pH effect of MB degradation was investigated using controlled pH solutions by an ultraviolet-visible (UV-Vis) spectroscopy and FT-IR. The results show no effect of MB degradation on pH. The results exhibit that the atmospheric pressure plasmas exposure has made it possible to degrade organic materials in solution due to irradiated radicals from plasma through plasma/liquid interface.Molecular-structure variation of organic materials irradiated with atmospheric pressure He plasma jet have been investigated. Optical emission spectrum in the atmospheric-pressure He plasma jet has been measured. The spectrum shows considerable emissions of He lines, and the emission of O and N radicals attributed to air. Variation in molecular structure of Polyethylene terephthalate (PET) film surface irradiated with the atmospheric-pressure He plasma jet has been observed via X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). These results via XPS and FT-IR indicate that the PET surface irradiated with the atmospheric-pressure He plasma jet was oxidized by chemical and/or physical effect due to irradiation of active species.The increased applications of carbon nanotubes in the field of drug delivery, bioimaging and biosensors demand nanotubes to be of highest purity, free from metallic impurities and amorphous carbon. All of these sectors require a profound investigation about the toxic effects on human and the environment. Many attempts have been made to purify and surface modify the carbon nanotubes, however a detailed study on the raw and purified material has yet to be conducted. Here we present the toxicity studies of raw and the purified single-walled carbon nanotubes in rat's lung epithelial cell and cervical cancer cells (HeLa). These cells were treated with increasing concentration of 0.5 µg/mL to 50 µg/mL and the various biocompatibility assays were performed. The results showed an increased cell death with purified single-walled carbon nanotubes followed by the depletion of antioxidant levels and activation of the caspase cascade at a rapid rate compared to raw single-walled carbon nanotubes. This suggests that purified single walled carbon nanotubes are more toxic to the cells and exhibit ultra-fine particulate matter like toxicity.To minimize the adverse side effects of conventional chemotherapy, a targeted micellar drug carrier was investigated that retains hydrophobic drugs in its core and then releases the drug via ultrasonic activation. This paper compares the percent drug release from folated versus non-folated micelles by insonation at 70 kHz and different acoustic power densities. The encapsulated drug is Doxoru- bicin (Dox). A physical model of zero-order release with first-order re-encapsulation was used to fit the experimental kinetic data. Additionally, the acoustic activation power density and Gibbs free energy were introduced and calculated for folated and non-targeted micelles. The data suggests an important role of inertial cavitation in drug release and the presence of a power density threshold for inertial cavitation.Radix Trichosanthis is a Chinese herbal medicine that has great medical value and pharmacological actions. There is already a long history of using the plant Radix Trichosanthis as treatment for hepatitis B virus in China. This research mainly focused on investigating the therapeutic effect of different extracts from Radix Trichosanthis on hepatitis B virus, on a cellular level (ex vivo). Cell survival rate of HepG2.2.15 cells was detected by MTT assay. HBsAg and HBeAg in HepG 2.2.15 cell supernatant were evaluated by enzyme linked immunosorbent assay (ELISA). NMS-873 manufacturer Results showed that water extract from Radix Trichosanthis had a stronger inhibitive effect on expression of HBsAg and HBeAg in HepG2.2.15 cells than the alcohol extract from the same plant. Considering that the most active component of Radix Trichosanthis was in its aqueous extract and this might be related to the active component Trichosanthin. Trichosanthin was further used for related experiments to confirm this hypothesis. The results showed that Trichosanthin, in the aqueous extract from Radix Trichosanthis, is likely the main component responsible for the anti-hepatitis B viral effect.In present study, we aimed at investigating the expression level of microRNA and the related gene which might be involved in retinopathy of prematurity. Neonatal SD rats were randomly divided into 2 groups, the first one having rats with NH4CI induced acidosis, as experimental group. We observed retinal vascular morphology and hyperplasia using microscope, for both experimental and control groups, in days 3, 5, 8, 10, 13 and 20 after birth. Total RNA from the retinal samples was obtained at each time point. MiR-126 and VEGF mRNA were measured by quantitative RT-PCR, while immunohistochemistry was applied to analyze the protein expression level of VEGF. Results showed significant differential expression of miR-126 in the acidosis-induced neonatal rats at day 8 when compared with control rats. The VEGF mRNA and protein quantitative results also demonstrated corresponding differential expression among the experimental and control groups. Results from this study revealed that VEGF mRNA and protein expression levels increased in day 10, while the expression of miR-126 was remarkably down-regulated. It is thus suggested that the miR-126 plays an important role in the development of acidosis-induced retinopathy.Hydrophobin is a surface active protein having both hydrophobic and hydrophilic functional domains which has previously been used for functionalization and solubilization of graphene and carbon nanotubes. In this work, field-effect transistors based on single nanotubes have been employed for electronic detection of hydrophobin protein in phosphate buffer solution. Individual nanotubes, single- and multiwalled, are characterized by atomic force microscopy after being immersed in protein solution, showing a relatively dense coverage with hydrophobin. We have studied aspects such as nanotube length (0.3-1.2 µm) and the hysteresis effect in the gate voltage dependent conduction. When measured in ambient condition after the exposure to hydrophobin, the resistance increase has a strong dependence on the nanotube length, which we ascribe to mobility degradation and localization effects. The change could be exceptionally large when measured in-situ in solution and at suitable gate voltage conditions, which is shown to relate to the different mechanism behind the hysteresis effect.Nanoparticles, such as semiconductor quantum dots (QDs), have been found increasing use in biomedical diagnosis and therapeutics because of their unique properties, including quantum confinement, surface plasmon resonance, and superparamagnetism. Cell-penetrating peptides (CPPs) represent an efficient mechanism to overcome plasma membrane barriers and deliver biologically active molecules into cells. In this study, we demonstrate that three arginine-rich CPPs (SR9, HR9, and PR9) can noncovalently complex with red light emitting QDs, dramatically increasing their deliv- ery into living cells. Zeta-potential and size analyses highlight the importance of electrostatic interactions between positive-charged CPP/QD complexes and negative-charged plasma membranes indicating the efficiency of transmembrane complex transport. Subcellular colocalization indicates associations of QD with early endosomes and lysosomes following PR9-mediated delivery. Our study demonstrates that nontoxic CPPs of varied composition provide an effective vehicle for the design of optimized drug delivery systems.The viability of A549 cells, a human lung carcinoma epithelial cell line, was evaluated after exposure to graphene oxide (GO) and its derivatives (dodecylamine GO (DA-GO), reduced GO (rGO), and sodium dodecyl sulfate rGO (SDS-rGO)). A decrease in the relative amounts of C-OH bonds and an increase in the number of C-C and C-N bonds in the C 1s spectra indicated that the reduction of GO to rGO and the surface functionalization of GO has taken place. The appearance of amine stretching bands, out-of-plane C-H stretching vibrations, and S = O stretching bands in the infrared spectra indicated the formation of DA-GO, rGO, and SDS-rGO, respectively. Low concentrations (3-25 µg/mL) of GO, rGO, and SDS-rGO were found to be mildly toxic, whereas DA-GO exhibited severe dose-dependent toxicity over the same concentration range. High concen- trations (50-400 µg/mL) of GO and all its derivatives resulted in severe toxicity to the A549 cells. It is believed that surface functionality strongly affects the viability of A549 cells.
My Website: https://www.selleckchem.com/products/nms-873.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team