Notes
![]() ![]() Notes - notes.io |
The uncontrolled release of long-lived radioactive substances from nuclear accidents can contaminate inhabited land areas. The removal of topsoil is an important method for reducing future radiation exposure but can also generate a large amount of waste that needs safe disposal. To the best of our knowledge, previous studies have determined the optimal depth of topsoil removal but not the size of the area designated for this measure. For this purpose, this study performed Monte Carlo simulations of hypothetical 137Cs surface contamination on various ground areas in a typical northern European suburban area. The goal was to study the size of the areas needed and amount of waste generated to achieve a certain relative and absolute dose reduction. The results showed that removing the topsoil from areas larger than 3000 m2 around the houses in the study neighbourhood results in only marginal reduction in radiation exposure. If, on average, 5 cm of topsoil is removed over 3000 m2, then 150 m3 of waste would be generated. However, in this scenario adjacent properties benefit from each other's decontamination, leading to a smaller amount of waste for a given reduction in future radiation exposure per inhabitant of these dwellings. Additionally, it was shown that topsoil removal over limited areas has a higher impact on the absolute dose reduction at an observation point inside or outside the houses with higher initial dose.Sudden cardiac death (SCD) caused by acute ischemic heart disease (IHD) is a major cause of sudden death worldwide. Circular RNAs (circRNAs) are abundant in the heart and play important roles in cardiovascular diseases, but the role of circRNAs as biomarkers in the forensic diagnosis of SCD caused by acute IHD remains poorly characterized. To investigate the potential of two heart-enriched circRNAs, circNFIX and circSLC8A1, we explored the expression of these two circRNAs in different kinds of commonly used IHD models, and further verified their expressions in forensic autopsy cases. The results from both the IHD rat and H9c2 cell models revealed that circSlc8a1 level was upregulated, while the circNfix level was elevated in the early stage of ischemia and subsequently downregulated. The time-dependent expression patterns of the two circRNAs suggested their potential as SCD biomarkers. In autopsy cases, the results showed that the expression of these two circRNAs in the myocardium with acute IHD-related SCDs corresponded to the observations in the ischemic models. Further analysis related to myocardial ischemia indicated that circSLC8A1 showed high sensitivity and specificity for myocardial infarction and was positively correlated with creatine kinase MB in pericardial fluid. Downregulated circNFIX level could indicate the ischemic myocardial damage, and it was negatively correlated with the coronary artery stenosis grade. The combination of circSLC8A1 and circNFIX had better performance to discriminate IHD-related SCDs. The results suggested that circSLC8A1 and circNFIX may be used as auxiliary diagnostic markers for SCD caused by acute IHD in forensic medicine.Beta-2-glycoprotein I (β2GPI) is a blood protein and the major antigen in the autoimmune disorder antiphospholipid syndrome (APS). β2GPI exists mainly in closed or open conformations and comprises of 11 disulfides distributed across five domains. The terminal Cys288/Cys326 disulfide bond at domain V has been associated with different cysteine redox states. The role of this disulfide bond in conformational dynamics of this protein has not been investigated so far. Here, we report on the enzymatic driven reduction by thioredoxin-1 (recycled by Tris(2-carboxyethyl)phosphine; TCEP) of β2GPI. Specific reduction was demonstrated by Western blot and mass spectrometry analyses confirming majority targeting to the fifth domain of β2GPI. Atomic force microscopy images suggested that reduced β2GPI shows a slightly higher proportion of open conformation and is more flexible compared to the untreated protein as confirmed by modelling studies. We have determined a strong increase in the binding of pathogenic APS autoantibodies to reduced β2GPI as demonstrated by ELISA. Selleckchem SRPIN340 Our study is relevant for understanding the effect of β2GPI reduction on the protein structure and its implications for antibody binding in APS patients.Development of monoclonal antibody is critical for targeted drug delivery because its characteristics determine improved therapeutic efficacy and reduced side-effect. Antibody therapeutics target surface molecules; hence, internalization is desired for drug delivery. As an antibody-drug conjugate, a critical parameter is drug-to-antibody ratio wherein the quantity of drugs attached to the antibody influences the antibody structure, stability, and efficacy. Here, we established a cell-based immunotoxin screening system to facilitate the isolation of functional antibodies with internalization capacities, and discovered an anti-human CD71 monoclonal antibody. To overcome the limitation of drug-to-antibody ratio, we employed the encapsulation capacity of liposome, and developed anti-CD71 antibody-conjugated liposome that demonstrated antigen-antibody dependent cellular uptake when its synthesis was optimized. Furthermore, anti-CD71 antibody-conjugated liposome encapsulating doxorubicin demonstrated antigen-antibody dependent cytotoxicity. In summary, this study demonstrates the powerful pipeline to discover novel functional antibodies, and the optimal method to synthesize immunoliposomes. This versatile technology offers a rapid and direct approach to generate antibodies suitable for drug delivery modalities.Alzheimer disease (AD) is a neurodegenerative disorder with an -as of yet- unclear etiology and pathogenesis. Research to unveil disease processes underlying AD often relies on the use of neurodegenerative disease model organisms, such as Caenorhabditis elegans. This study sought to identify biological pathways implicated in AD that are conserved in Homo sapiens and C. elegans. Protein-protein interaction networks were assembled for amyloid precursor protein (APP) and Tau in H. sapiens-two proteins whose aggregation is a hallmark in AD-and their orthologs APL-1 and PTL-1 for C. elegans. Global network alignment was used to compare these networks and determine similar, likely conserved, network regions. This comparison revealed that two prominent pathways, the APP-processing and the Tau-phosphorylation pathways, are highly conserved in both organisms. While the majority of interactions between proteins in those pathways are known to be associated with AD in human, they remain unexamined in C. elegans, signifying the need for their further investigation. In this work, we have highlighted conserved interactions related to AD in humans and have identified specific proteins that can act as targets for experimental studies in C. elegans, aiming to uncover the underlying mechanisms of AD.Increasing evidence points towards the role of mitochondrial functioning, energy metabolism, and oxidative stress in migraine. However not all previous research has been conclusive and some mitochondrial function/oxidative stress markers have not yet been examined. To this end, alpha-lipoic acid (ALA), total thiols, total plasma antioxidant capacity (TAC), lipid peroxide (PerOx), oxidised LDL (oxLDL), HbA1c and lactate were determined in the serum of 32 higher frequency episodic migraineurs (5-14 migraine days/ months, 19 with aura, 28 females) in this cross-sectional study. The majority of patients had abnormally low ALA and lactate levels (87.5% and 78.1%, respectively). 46.9% of the patients had abnormally high PerOx values, while for thiols and TAC over one third of patients had abnormally low values (31.2% and 37.5%, respectively). 21.9% of patients had abnormally low HbA1c and none had an HbA1c level above 5.6%. oxLDL was normal in all but one patient. This study provides further evidence for a role of oxidative stress and altered metabolism in migraine pathophysiology, which might represent a suitable therapeutic target. ALA, being too low in almost 90% of patients, might represent a potential biomarker for migraine. Further research is needed to replicate these results, in particular a comparison with a control group.This study is part of the trial registration ClinicalTrials.gov NCT03132233, registered on 27.04.2017, https//clinicaltrials.gov/ct2/show/NCT03132233 .Pulmonary vein isolation (PVI) using cryoenergy is safe and efficient for treatment of atrial fibrillation (AF). Pre-existing upper gastrointestinal (GI) pathologies have been shown to increase the risk for AF. Therefore, this study aimed at assessing incidental pathologies of the upper GI tract in patients scheduled for PVI and to analyse the impact of patients' characteristics on PVI safety outcome. In 71 AF patients, who participated in the MADE-PVI trial, oesophagogastroduodenoscopy and endosonography were prospectively performed directly before and the day after PVI to assess pre-existing upper GI pathologies and post-interventional occurrence of PVI-associated lesions. Subgroup analysis of the MADE-PVI trial identified clinically relevant incidental findings in 53 patients (74.6%) with age > 50 years being a significant risk factor. Pre-existing reflux oesophagitis increased risk for PVI-associated mediastinal oedema, while patients already treated with proton pump inhibitors (PPI) had significantly fewer mediastinal oedema. Our results suggest that AF patients with pre-existing reflux oesophagitis are at higher risk for PVI-associated mediastinal lesions, which is decreased in patients with constant PPI-treatment prior to PVI. Since PVI-associated mediastinal lesions are regarded as surrogate parameter for an increased risk of the fatal complication of an oesophago-atrial fistula, our findings hint at a beneficial effect of pre-interventional prophylactic PPI-treatment to reduce risk for PVI-associated complications.German Clinical Trials Register (DRKS00016006; date of registration 17/12/2018).Central nervous system (CNS) injury and infection can result in profound tissue remodeling in the brain, the mechanism and purpose of which is poorly understood. Infection with the protozoan parasite Toxoplasma gondii causes chronic infection and inflammation in the brain parenchyma. Control of parasite replication requires the continuous presence of IFNγ-producing T cells to keep T. gondii in its slowly replicating cyst form. During infection, a network of extracellular matrix fibers, revealed using multiphoton microscopy, forms in the brain. The origin and composition of these structures are unknown but the fibers have been observed to act as a substrate for migrating T cells. In this study, we show a critical regulator of extracellular matrix (ECM) remodeling, Secreted Protein, Acidic, Rich in Cysteine (SPARC), is upregulated in the brain during the early phases of infection in the frontal cortex. In the absence of SPARC, a reduced and disordered fibrous network, increased parasite burden, and reduced antigen-specific T cell entry into the brain points to a role for SPARC in T cell recruitment to and migration within the brain. We also report SPARC can directly bind to CCR7 ligands CCL19 and CCL21 but not CXCL10, and enhance migration toward a chemokine gradient. Measurement of T cell behavior points to tissue remodeling being important for access of immune cells to the brain and facilitating cellular locomotion. Together, these data identify SPARC as an important regulatory component of immune cell trafficking and access to the inflamed CNS.
Read More: https://www.selleckchem.com/products/srpin340.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team