Notes
Notes - notes.io |
Regulation of bacterial stress responding σS is a sophisticated process and mediated by multiple interacting partners. Controlled proteolysis of σS is regulated by RssB which maintains minimal level of σS during exponential growth but then elevates σS level while facing stresses. Bacteria developed different strategies to regulate activity of RssB, including phosphorylation of itself and production of anti-adaptors. However, the function of phosphorylation is controversial and the mechanism of anti-adaptors preventing RssB-σS interaction remains elusive. Here, we demonstrated the impact of phosphorylation on the activity of RssB and built the RssB-σS complex model. Importantly, we showed that the phosphorylation site - D58 is at the interface of RssB-σS complex. Hence, mutation or phosphorylation of D58 would weaken the interaction of RssB with σS. We found that the anti-adaptor protein IraD has higher affinity than σS to RssB and its binding interface on RssB overlaps with that for σS. And IraD-RssB complex is preferred over RssB-σS in solution, regardless of the phosphorylation state of RssB. Our study suggests that RssB possesses a two-tier mechanism for regulating σS. selleck First, phosphorylation of RssB provides a moderate and reversible tempering of its activity, followed by a specific and robust inhibition via the anti-adaptor interaction.Triptolide (TP) is a diterpene epoxide component extracted from Tripterygium wilfordii and has been shown to possess an impressive anticancer effect. However, TP has not yet entered any clinic trials due to the severe adverse effects that resulted from the off-target absorption and distribution found in animal studies. In this study, we designed and synthesized three amino acids (tryptophan, valine, and lysine) based TP prodrugs to target ATB0,+ which are highly expressed in pancreatic cancer cells for more effective pancreatic cancer therapy. The stability, uptake profiles, uptake mechanism, and cancer-killing ability were studied in vitro. All three prodrugs showed increased uptake and enhanced cytotoxicity in pancreatic cancer cells, but not in normal pancreatic cells. The difference in killing effect on normal and cancer cells was attributed to pancreatic cancer over-expressed ATB0,+-mediated uptake. Specifically, tryptophan-conjugated TP prodrug (TP-Trp) showed the highest uptake and the best cancer cell killing effect, considered as the best candidate. The present study provided the proof-of-concept of exploiting TP prodrug to target ATB0,+ for pancreatic cancer-selective delivery and treatment.Musculoskeletal diseases often demand a drug treatment at the specific site of injury or defect site. In this context, the use of calcium phosphates is attractive as it allows both the bone substitution and the local delivery of a drug substance. In this work, we present a drug delivery device that combines calcium phosphate bioceramic granules and ibuprofen, a widely used anti-inflammatory drug. After verifying in vitro biocompatibility of the ibuprofen-loaded calcium phosphate granules on murine preosteoblastic cells (MC3T3), we evaluated in vitro efficiency of the drug substance released from the bioceramic using rheumatoid arthritis synoviocytes. Our data document that ibuprofen-loaded calcium phosphate granules reduced inflammatory response and increased apoptosis of synoviocytes. In vivo study showed that both unloaded, and ibuprofen-loaded calcium phosphate granules induced a progressive osteogenesis, but in the case of ibuprofen-loaded implants, bone ingrowth was more limited in first weeks. However, as far as concerns inflammation, while unloaded granules showed inflammation up to 4 weeks, ibuprofen loaded granules did not show any significant inflammation. Ibuprofen concentration determination in blood samples showed that a very small amount of the drug reached the general circulation which render this drug delivery system suitable for both bone substitution and reduction of inflammation at the implantation site. Thus, this new drug carrier could be used to locally relieve inflammatory bone diseases symptoms including rheumatoid arthritis but, beyond this study, this kind of granules could be considered for the delivery of therapeutic agents such as antibiotic, analgesic or anticancer drugs.Pseudomonas aeruginosa is the predominant opportunistic bacterium that causes chronic respiratory infections in cystic fibrosis (CF) patients. This bacterium can form biofilms, which are structured communities of cells encased within a self-produced matrix. Such biofilms have a high level of resistance to multiple classes of antibiotics. A widely used treatment of P. aeruginosa lung infections in CF patients is tobramycin dry powder inhalation. The behaviour of particles in the lung has been well studied, and dry powder inhalers are optimised for optimal dispersion of the drug into different zones of the lung. However, one question that has not been addressed is whether the size of an antibiotic particle influences the antibiofilm activity against P. aeruginosa. We investigated this by fractionating tobramycin particles using a Next Generation Impactor (NGI). The fractions obtained were then tested in an in vitro model on P. aeruginosa biofilms. The results indicate that the antibiofilm activity of tobramycin dry powder inhaler can indeed be influenced by the particle size. Against P. aeruginosa biofilms of two clinical isolates, smaller tobramycin particles (aerodynamic diameter less then 2.82 µm) showed better efficacy by approximately 20% as compared to larger tobramycin particles (aerodynamic diameter less then 11.7 µm) However, this effect was only observed when biofilms were treated for 3 hours, whereas there was no difference after treatment for 24 hours. This suggests that in our model the rate of dissolution of larger particles limits the effectiveness of tobramycin over a 3-hour time period, which is relevant as this is equivalent to the time in which most tobramycin is cleared from the lung.
Despite the growing recognition of duodenal alterations in the pathophysiology of functional dyspepsia (FD), the effect and mechanism of proton pump inhibitors (PPIs) or first-line therapy remain unclear. We studied duodenal and systemic alterations in relation to PPI therapy in patients with FD and healthy volunteers (HVs).
We performed a prospective interventional study assessing symptoms (Patient Assessment of Gastrointestinal Symptom Severity Index), duodenal alterations, and systemic factors in patients with FD ("FD-starters") and HVs before and after PPI therapy (pantoprazole 40 mg once daily for 4 weeks). Duodenal mucosal eosinophils, mast cells and permeability were quantified. Luminal pH and bile salts were determined in duodenal aspirates. Procedures were also performed in PPI-refractory patients with FD ("FD-stoppers") before and 8 weeks after PPI withdrawal. Between- and within-group changes from baseline and associations with duodenal or systemic factors were analyzed using linear mixed modelCT03545243.
Although the tumor microenvironment plays an important role in tumor growth, it is not fully understood what role hepatic stellate cells (HSCs) play in the hepatocellular carcinoma (HCC) microenvironment.
A high-fat diet after streptozotocin was administered to HSC-specific Atg7-deficient (GFAP-Atg7 knockout [KO]) or growth differentiation factor 15 (GDF15)-deficient (GFAP-GDF15KO) mice. LX-2 cells, a human HSC cell line, were cultured with human hepatoma cells.
In the steatohepatitis-based tumorigenesis model, GFAP-Atg7KO mice formed fewer and smaller liver tumors than their wild-type littermates. Mixed culture of LX-2 cells and hepatoma cells promoted LX-2 cell autophagy and hepatoma cell proliferation, which were attenuated by Atg7 KO in LX-2 cells. Hepatoma cell xenograft tumors grew rapidly in the presence of LX-2 cells, but Atg7 KO in LX-2 cells abolished this growth. RNA-sequencing revealed that LX-2 cells cultured with HepG2 cells highly expressed GDF15, which was abolished by Atg7 KO in LX-2 cells. GDF15 KO LX-2 cells did not show a growth-promoting effect on hepatoma cells either invitro or in the xenograft model. GDF15 deficiency in HSCs reduced liver tumor size caused by the steatohepatitis-based tumorigenesis model. GDF15 was highly expressed and GDF15-positive nonparenchymal cells were more abundant in human HCC compared with noncancerous parts. Single-cell RNA sequencing showed that GDF15-positive rates in HSCs were higher in HCC than in background liver. Serum GDF15 levels were high in HCC patients and increased with tumor progression.
In the HCC microenvironment, an increase of HSCs that produces GDF15 in an autophagy-dependent manner may be involved in tumor progression.
In the HCC microenvironment, an increase of HSCs that produces GDF15 in an autophagy-dependent manner may be involved in tumor progression.Resilience to stress is an adaptive process that varies individually. Resilience refers to the adaptation, or the ability to maintain or regain mental health, despite being subject to adverse situation. Resilience is a dynamic concept that reflects a combination of internal individual factors, including age and gender interacting with external factors such as social, cultural and environmental factors. In the last decade, we have witnessed an increase in the prevalence of anxiety disorders, including post-traumatic stress disorder. Given that stress in unavoidable, it is of great interest to understand the neurophysiological mechanisms of resilience, the individual factors that may contribute to susceptibility and promote efficacious approaches to improve resilience. Here, we address this complex question, attempting at defining clear and operational definitions that may allow us to improve our analysis of behavior incorporating individuality. We examine how individual perception of the stressor can alter the outcome of an adverse situation using as an example, the fear-conditioning paradigm and discuss how individual differences in the reward system can contribute to resilience. Given the central role of the endocannabinoid system in regulating fear responses and anxiety, we discuss the evidence that polymorphisms in several molecules of this signaling system contribute to different anxiety phenotypes. The endocannabinoid system is highly interconnected with the serotoninergic and dopaminergic modulatory systems, contributing to individual differences in stress perception and coping mechanisms. We review how the individual variability in these modulatory systems can be used towards a multivariable assessment of stress risk. Incorporating individuality in our research will allow us to define biomarkers of anxiety disorders as well as assess prognosis, towards a personalized clinical approach to mental health.Niemann-Pick type C (NPC) disease is a lysosomal storage disorder characterized by cholesterol accumulation caused by loss-of-function mutations in the Npc1 gene. NPC disease primarily affects the brain, causing neuronal damage and affecting motor coordination. In addition, considerable liver malfunction in NPC disease is common. Recently, we found that the depletion of annexin A6 (ANXA6), which is most abundant in the liver and involved in cholesterol transport, ameliorated cholesterol accumulation in Npc1 mutant cells. To evaluate the potential contribution of ANXA6 in the progression of NPC disease, double-knockout mice (Npc1-/-/Anxa6-/-) were generated and examined for lifespan, neurologic and hepatic functions, as well as liver histology and ultrastructure. Interestingly, lack of ANXA6 in NPC1-deficient animals did not prevent the cerebellar degeneration phenotype, but further deteriorated their compromised hepatic functions and reduced their lifespan. Moreover, livers of Npc1-/-/Anxa6-/- mice contained a significantly elevated number of foam cells congesting the sinusoidal space, a feature commonly associated with inflammation.
Homepage: https://www.selleckchem.com/products/rg2833-rgfp109.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team