Notes
Notes - notes.io |
In the LPS group, there was a significant reduction in cell viability. Myeloperoxidase and nitrite/nitrate concentrations demonstrated a better effect at 0.01 and 0.1 g/ml doses. There was a significant reduction in interleukin-6 (IL-6) levels at 0.1 g/ml dose in all paraprobiotics. IL-10 levels decreased in the LPS group and increased at 0.1 g/ml dose in all paraprobiotics. The dichlorofluorescin diacetate results were reinforced by the observed in oxidative damage. Paraprobiotics are likely to contribute to the improvement of intestinal homeostasis, immunomodulation, and host metabolism.Bacillus thuringiensis is an agriculturally and medically important bacteria as it produces insecticidal Cry proteins and can form biofilm on different plant surfaces. Previous studies reported that the ubiquitous carbon source glucose could induce restricted motility and fractal pattern formation in the growing colonies of pH, salt and arsenate tolerant Bacillus thuringiensis KPWP1. As bacteria are evolved with the ability to exhibit multicellular behavior and biofilm formation under limiting conditions for survival, the present study was focused on exploring the effect of glucose in biofilm formation by Bacillus thuringiensis KPWP1. A significant rise in biofilm loads was observed with increased glucose concentrations in growth media. Compared to control, six times more biofilm load was marked in presence of 2% of glucose. Interestingly, it was observed that the effect was glucose specific and also not due to any change in the sugar-induced physicochemical property of the growth media as the addition of galactose or arabinose could not induce any significant increase in KPWP1 biofilm load. Scanning electron-, confocal laser scanning-microscopic studies and biochemical tests revealed that increased concentrations of glucose could induce increased production of exopolymeric substances, increased number of densely-packed micro-colonies in KPWP1 biofilm and increased hydrophobicity and adherence properties in KPWP1cells.A novel strain, wg2T, was isolated from activated sludge obtained from wastewater treatment plant in Shandong province, China. The bacterium was Gram-strain-negative, aerobic, rod-shaped, non-flagellated and non-gliding. This bacterium was characterized to determine its taxonomic position using the polyphasic approach. Strain wg2T grew at 25-45 °C (optimum, 30 °C), at salinities of 0-7.0% (w/v) NaCl (optimum, 0-2.0%) and at pH 7-9 (optimum, pH 7.0). Phylogenetic analysis based on 16S rRNA gene sequence showed that strain wg2T clustered with species of genus Paracoccus and shares high similarities with Paracoccus sediminis DSM 26170 T (98.1%) and Paracoccus fontiphilus MVW-1 T (97.7%), respectively. The genome size of strain wg2T was 3.93 Mbp and the DNA G + C content was 66.05%. The dDDH values and ANI between strain wg2T and each of reference strains P. sediminis DSM 26170 T, P. fontiphilus MVW-1 T and P. denitrificans DSM 413 T were 18.3, 12.5, 24.5% and 85.3, 87.0, 78.4%, respectively. CIL56 The major respiratory quinone was found to be Q-10 and the major fatty acid was C181 ω7c. The polar lipids consisted of aminoglycolipid (AGL), phosphatidylcholine (PC), glycolipid (GL), phosphatidylserine (PS), phosphatidylglycerol phosphate (PGP), aminophospholipids (APL). Combining above descriptions, strain wg2T should represent a novel species of genus Paracoccus, for which the name Paracoccus shandongensis sp. nov., is proposed. The type strain is wg2T (= KCTC 72862 T = CCTCC AB 2019401 T).Infections from multi-drug resistant bacteria and biofilms constitute a serious problem worldwide. There is a need for new antibacterial and antibiofilm compounds in the fight against infectious diseases. In recent years, pigment-producing microorganisms have drawn a great deal of attention as a promising source for antibacterial and antibiofilm compounds. Here, we report the antibacterial and antibiofilm activity of pigments synthesized by bacteria isolated from soil. This study aimed to perform an evaluation of the antibacterial, antibiofilm, and characteristic of crude pigments from Rhodococcus sp. SC1 isolates. The total pigment extract exhibited antibacterial activity against Gram-positive and Gram-negative reference bacteria with required minimum inhibitory concentration (MIC) values ranging from 64 to 256 µg/ml. Moreover, it reduced biofilm formation of Gram-negative reference bacteria at sub-MIC concentration. For characterization of the pigments, UV-absorbance, thin layer chromatography, fourier transform infrared spectroscopy, and QTOF-LC/MS analyses were performed. The results of this study showed that pigments of Rhodococcus sp. SC1 isolates can be a candidate for medical applications.Microorganisms due, to their immense metabolic diversity, have the potential to augment the uptake of iron and zinc in addition to other important nutrients in plants. In the present work, 129 different strains of endophytic bacteria were retrieved from stems and leaves of maize. Qualitative screening of these endophytes showed that 24.5% of these isolates were siderophore producers, while 14% could solubilize insoluble zinc compounds and 33% of them had phytase activity. Based on zinc solubilization efficiency and siderophore production ability, 10 isolates each from zinc solubilizers and siderophore producers were selected. Molecular identification indicated that the selected bacteria belonged to diverse genera Microbacterium, Pseudonocardia, Bacillus, Cellulosimicrobium, Staphylococcus, Luteimonas, Bordetella, Brevundimonas, Streptomyces, Cupriavidus, Sphingomonas, Ralstonia, Ochrobactrum, Conyzicola, Paenibacillus and Leifsonia. Quantitative analyses of Zn solubilization using Atomic absorption spectrophotometry (AAS) revealed that Microbacterium hydrothermale M10 and M. proteolyticum B2 were potential solubilizers of different forms of insoluble zinc compounds viz. ZnCO3 (56.63-89.88 ppm), ZnO (106.38-120.08 ppm) and ZnS (3.62-5.56 ppm). Similarly, quantitative estimation of siderophore production activity revealed two endophytes viz. Bacillus altitudinis C7 (97.25% siderophore units) and Pseudonocardia alni M29 (92.05% siderophore units) as potential siderophore producers. These endophytes with potential to produce siderophores and phytases and ability to solubilize zinc can be an important starting material for trials on field to improve Fe and Zn content in edible portion of food crops.Lentilactobacillus kefiri is one of the main lactic acid bacteria species in kefir and it was also isolated from other fermented foods. Numerous strains have been isolated and characterized regarding its potential as probiotics for the development of novel functional foods. To our knowledge this is the first review focused on highlighting safety aspects and health beneficial effects reported for L. kefiri strains. Several L. kefiri strains lack of transmissible antibiotic resistance genes, are tolerant to the harsh conditions of the gastrointestinal environment, and could resist different preservation procedures. Moreover, many of the isolated strains have shown antimicrobial activity against pathogens and their toxins, exhibited immunomodulatory activity as well as induced some beneficial effects at metabolic level. Regarding all the scientific evidence, certain L. kefiri strains emerge as excellent candidates to be applied to the development of both food supplements and new fermented foods with health-promoting properties. However, the availability of genomic information is still very limited, so much more work must be done in order to explore the potentiality of L. kefiri as a probiotic and a source of bioactive metabolites.Mutations in IDH1/2 and the epigenetic silencing of TET2 occur in leukaemia or glioma in a mutually exclusive manner. Although intrahepatic cholangiocarcinoma (iCCA) may harbour IDH1/2 mutations, the contribution of TET2 to carcinogenesis remains unknown. In the present study, the expression and promoter methylation of TET2 were investigated in iCCA. The expression of TET2 was assessed in 52 cases of iCCA (small-duct type, n = 33; large-duct type, n = 19) by quantitative PCR, immunohistochemistry (IHC) and a sequencing-based methylation assay, and its relationships with clinicopathological features and alterations in cancer-related genes (e.g., KRAS and IDH1) were investigated. In contrast to non-neoplastic bile ducts, which were negative for TET2 on IHC, 42 cases (81%) of iCCA showed the nuclear overexpression of TET2. Based on IHC scores (area × intensity), these cases were classified as TET2-high (n = 25) and TET2-low (n = 27). The histological type, tumour size, lymph node metastasis and frequency of mutations in cancer-related genes did not significantly differ between the two groups. Overall and recurrence-free survival were significantly worse in patients with TET2-high iCCA than in those with TET2-low iCCA. A multivariate analysis identified the high expression of TET2 as an independent prognostic factor (HR = 2.94; p = 0.007). The degree of methylation at two promoter CpG sites was significantly less in TET2-high iCCA than in TET2-low iCCA or non-cancer tissue. In conclusion, in contrast to other IDH-related neoplasms, TET2 overexpression is common in iCCA of both subtypes, and its high expression, potentially induced by promoter hypomethylation, is an independent poor prognostic factor.Floral nectar is colonised by microbes, especially yeasts which alter the scent, temperature, and chemical composition of nectar, thereby playing an essential role in pollination. The yeast communities inhabiting the nectar of tropical flowers of India are not well explored. We isolated 48 yeast strains from seven different tropical flowering plants. Post MSP-PCR-based screening, 23 yeast isolates and two yeast-like fungi were identified, which belonged to 16 species of 12 genera viz. Candida (2 species), Aureobasidium (2 species), Metschnikowia (2 species), Meyerozyma (1 species), Saitozyma (1 species), Wickerhamomyces (1 species), Kodamaea (2 species), Pseudozyma (1 species), Starmerella (1 species), Hanseniaspora (1 species), Rhodosporidiobolus (1 species), Moesziomyces (1 species), and two putative novel species. All yeast strains were assessed for their osmotolerance abilities in high salt and sugar concentration. Among all the isolates, C. nivariensis (SRA2.2, SRA1.1 and SRA2.1), M. caribbica (SRA4.8 and SRA4.6), S. flava SRA4.2, and M. reukaufii SRA3.2 showed significant growth in high concentrations of sugar (40-50% glucose), as well as salt (12-15% NaCl). All 25 strains were also screened for their ability to utilise xylose to produce xylitol. Meyerozyma caribbica was the most efficient xylitol producer, wherein three strains of this species (SRA4.6, SRA4.1, and SRA4.8) generated 18.61 to 21.56 g l-1 of xylitol, with 0.465-0.539 g g-1 yields. Through this study, we draw attention towards the tropical floral nectar as a potential niche for the isolation of diverse, osmotolerant, and xylitol-producing yeasts. Such osmotolerant yeasts have potential applications in food industries and biofuel production.Pseudomonas aeruginosa is a ubiquitous bacterium found in hospitals and the surrounding environment. The ability of P. aeruginosa to form biofilms confers high-level resistance to antibiotics, and the persister cells formed in the presence of high antibacterial drug concentrations make P. aeruginosa-related infections more refractory. Further, there rarely is an effective antimicrobial alternative when biofilm- and persister cell-targeting treatment fails. Using a high-throughput screening assay, we previously identified fluoroquinolones sitafloxacin, prulifloxacin, and tosufloxacin as well as aminoglycoside sisomicin among FDA-approved drugs with significant bactericidal activity against P. aeruginosa. In addition, in our current study, these antibiotics exhibited an effective time- and dose-dependent eradication effects against the preformed biofilms of P. aeruginosa at the concentrations of 2-4 μM. These agents also exhibited bactericidal efficacy against CCCP-induced P. aeruginosa persister cells with the viable cell count decreased from 9.
Website: https://www.selleckchem.com/products/ca3.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team