NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Sim: a progressive Way of Interesting Preclinical Medical Individuals with Bioethics.
The tracking effectiveness is analyzed by a video experiment. This method provides, for the first time, an effective idea of multi-target tracking using SPI.High-spatial-resolution images play an important role in land cover classification, and object-based image analysis (OBIA) presents a good method of processing high-spatial-resolution images. Segmentation, as the most important premise of OBIA, significantly affects the image classification and target recognition results. However, scale selection for image segmentation is difficult and complicated for OBIA. The main challenge in image segmentation is the selection of the optimal segmentation parameters and an algorithm that can effectively extract the image information. This paper presents an approach that can effectively select an optimal segmentation scale based on land object average areas. First, 20 different segmentation scales were used for image segmentation. Next, the classification and regression tree model (CART) was used for image classification based on 20 different segmentation results, where four types of features were calculated and used, including image spectral bands value, texture value, vegr extended and used for different image segmentation algorithms.Research about deep learning applied in object detection tasks in LiDAR data has been massively widespread in recent years, achieving notable developments, namely in improving precision and inference speed performances. These improvements have been facilitated by powerful GPU servers, taking advantage of their capacity to train the networks in reasonable periods and their parallel architecture that allows for high performance and real-time inference. However, these features are limited in autonomous driving due to space, power capacity, and inference time constraints, and onboard devices are not as powerful as their counterparts used for training. This paper investigates the use of a deep learning-based method in edge devices for onboard real-time inference that is power-effective and low in terms of space-constrained demand. A methodology is proposed for deploying high-end GPU-specific models in edge devices for onboard inference, consisting of a two-folder flow study model hyperparameters' implications in meeting application requirements; and compression of the network for meeting the board resource limitations. A hybrid FPGA-CPU board is proposed as an effective onboard inference solution by comparing its performance in the KITTI dataset with computer performances. The achieved accuracy is comparable to the PC-based deep learning method with a plus that it is more effective for real-time inference, power limited and space-constrained purposes.The aim of this study was to investigate the relationship between heart rate and heart rate variability (HRV) with respect to individual characteristics and acute stressors. In particular, the relationship between heart rate, HRV, age, sex, body mass index (BMI), and physical activity level was analyzed cross-sectionally in a large sample of 28,175 individuals. Additionally, the change in heart rate and HRV in response to common acute stressors such as training of different intensities, alcohol intake, the menstrual cycle, and sickness was analyzed longitudinally. Acute stressors were analyzed over a period of 5 years for a total of 9 million measurements (320±374 measurements per person). HRV at the population level reduced with age (p less then 0.05, r = -0.35, effect size = moderate) and was weakly associated with physical activity level (p less then 0.05, r = 0.21, effect size = small) and not associated with sex (p = 0.35, d = 0.02, effect size = negligible). Heart rate was moderately associated withrate (p less then 0.05, d = 0.97, effect size = large) and 10% reduction in HRV (p less then 0.05, d = 0.47, effect size = moderate) during sickness. Acute stressors analysis revealed how HRV is a more sensitive but not specific marker of stress. In conclusion, a short resting heart rate and HRV measurement upon waking using a smartphone app can effectively be used in free-living to quantify individual stress responses across a large range of individuals and stressors.Modern radar jamming scenarios are complex and changeable. In order to improve the adaptability of frequency-agile radar under complex environmental conditions, reinforcement learning (RL) is introduced into the radar anti-jamming research. There are two aspects of the radar system that do not obey with the Markov decision process (MDP), which is the basic theory of RL Firstly, the radar cannot confirm the interference rules of the jammer in advance, resulting in unclear environmental boundaries; secondly, the radar has frequency-agility characteristics, which does not meet the sequence change requirements of the MDP. As the existing RL algorithm is directly applied to the radar system, there would be problems, such as low sample utilization rate, poor computational efficiency and large error oscillation amplitude. In this paper, an adaptive frequency agile radar anti-jamming efficient RL model is proposed. First, a radar-jammer system model based on Markov game (MG) established, and the Nash equilibrium point determined and set as a dynamic environment boundary. Subsequently, the state and behavioral structure of RL model is improved to be suitable for processing frequency-agile data. Experiments that our proposal effectively the anti-jamming performance and efficiency of frequency-agile radar.Third-generation semiconductor materials have a wide band gap, high thermal conductivity, high chemical stability and strong radiation resistance. These materials have broad application prospects in optoelectronics, high-temperature and high-power equipment and radiation detectors. In this work, thin-film solid state neutron detectors made of four third-generation semiconductor materials are studied. Geant4 10.7 was used to analyze and optimize detectors. The optimal thicknesses required to achieve the highest detection efficiency for the four materials are studied. The optimized materials include diamond, silicon carbide (SiC), gallium oxide (Ga2O3) and gallium nitride (GaN), and the converter layer materials are boron carbide (B4C) and lithium fluoride (LiF) with a natural enrichment of boron and lithium. With optimal thickness, the primary knock-on atom (PKA) energy spectrum and displacements per atom (DPA) are studied to provide an indication of the radiation hardness of the four materials. The gamma rejection capabilities and electron collection efficiency (ECE) of these materials have also been studied. This work will contribute to manufacturing radiation-resistant, high-temperature-resistant and fast response neutron detectors. It will facilitate reactor monitoring, high-energy physics experiments and nuclear fusion research.Internet of Vehicles (IoV) has emerged as an advancement over the traditional Vehicular Ad-hoc Networks (VANETs) towards achieving a more efficient intelligent transportation system that is capable of providing various intelligent services and supporting different applications for the drivers and passengers on roads. In order for the IoV and VANETs environments to be able to offer such beneficial road services, huge amounts of data are generated and exchanged among the different communicated entities in these vehicular networks wirelessly via open channels, which could attract the adversaries and threaten the network with several possible types of security attacks. In this survey, we target the authentication part of the security system while highlighting the efficiency of blockchains in the IoV and VANETs environments. First, a detailed background on IoV and blockchain is provided, followed by a wide range of security requirements, challenges, and possible attacks in vehicular networks. Then, a more focused review is provided on the recent blockchain-based authentication schemes in IoV and VANETs with a detailed comparative study in terms of techniques used, network models, evaluation tools, and attacks counteracted. Lastly, some future challenges for IoV security are discussed that are necessary to be addressed in the upcoming research.At present, learning-based citrus blossom recognition models based on deep learning are highly complicated and have a large number of parameters. In order to estimate citrus flower quantities in natural orchards, this study proposes a lightweight citrus flower recognition model based on improved YOLOv4. see more In order to compress the backbone network, we utilize MobileNetv3 as a feature extractor, combined with deep separable convolution for further acceleration. The Cutout data enhancement method is also introduced to simulate citrus in nature for data enhancement. The test results show that the improved model has an mAP of 84.84%, 22% smaller than that of YOLOv4, and approximately two times faster. Compared with the Faster R-CNN, the improved citrus flower rate statistical model proposed in this study has the advantages of less memory usage and fast detection speed under the premise of ensuring a certain accuracy. Therefore, our solution can be used as a reference for the edge detection of citrus flowering.The diversity of materials proposed for non-enzymatic glucose detection and the lack of standardized protocols for assessing sensor performance have caused considerable confusion in the field. Therefore, methods for pre-evaluation of working electrodes, which will enable their conscious design, are currently intensively sought. Our approach involved comprehensive morphologic and structural characterization of copper sulfides as well as drop-casted suspensions based on three different polymers-cationic chitosan, anionic Nafion, and nonionic polyvinylpyrrolidone (PVP). For this purpose, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman spectroscopy were applied. Subsequently, comparative studies of electrochemical properties of bare glassy carbon electrode (GCE), polymer- and copper sulfides/polymer-modified GCEs were performed using electrochemical impedance spectroscopy (EIS) and voltammetry. The results from EIS provided an explanation for the enhanced analytical performance of Cu-PVP/GCE over chitosan- and Nafion-based electrodes. Moreover, it was found that the pH of the electrolyte significantly affects the electrocatalytic behavior of copper sulfides, indicating the importance of OHads in the detection mechanism. Additionally, diffusion was denoted as a limiting step in the irreversible electrooxidation process that occurs in the proposed system.Global competition among businesses imposes a more effective and low-cost supply chain allowing firms to provide products at a desired quality, quantity, and time, with lower production costs. The latter include holding cost, ordering cost, and backorder cost. Backorder occurs when a product is temporarily unavailable or out of stock and the customer places an order for future production and shipment. Therefore, stock unavailability and prolonged delays in product delivery will lead to additional production costs and unsatisfied customers, respectively. Thus, it is of high importance to develop models that will effectively predict the backorder rate in an inventory system with the aim of improving the effectiveness of the supply chain and, consequentially, the performance of the company. However, traditional approaches in the literature are based on stochastic approximation, without incorporating information from historical data. To this end, machine learning models should be employed for extracting knowledge of large historical data to develop predictive models.
Here's my website: https://www.selleckchem.com/products/d609.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.