NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Emergency treating throat stoma sufferers throughout the coronavirus outbreak: a nationwide registered nurse study.
Here, to the best of our knowledge, for the first time we report an in-depth experimental study of high ultrafast laser ablation efficiency for processing of copper and steel with single-pulses, MHz, GHz, and burst-in-the-burst (biburst) regimes. The comparison of burst, biburst, and single-pulse ablation efficiencies was performed for beam-size-optimised regimes, showing the real advantages and disadvantages of milling and drilling processing approaches. Highly efficient ultrashort pulse laser processing was achieved for ∼1 µm optical wavelength 8.8 µm3/µJ for copper drilling, 5.6 µm3/µJ for copper milling, and 6.9 µm3/µJ for steel milling. We believe that the huge experimental data collected in this study will serve well for the better understanding of laser burst-matter interaction and theoretical modelling.This paper is concerned with the mitigation of backscatter effects in a single gated image. A range-intensity-profile prior dehazing method is proposed to estimate scene depth and finely remove water backscatter at different depths for underwater range-gated imaging. It is based on the prior that the target intensity is distributed with range intensity profiles in gated images. The depth transmission and depth-noise map are then calculated from the scene depth. A high-quality image is restored by subtracting the depth-noise map and dividing the depth transmission. The simulation and experimental results show that the proposed method works well even if a portion of the estimated depth may be smaller than its real value, and the peak signal-to-noise ratio of dehazing images gets up to a doubled increase.Anomalous diffusion dynamics in confined nanoenvironments govern the macroscale properties and interactions of many biophysical and material systems. Currently, it is difficult to quantitatively link the nanoscale structure of porous media to anomalous diffusion within them. Fluorescence correlation spectroscopy super-resolution optical fluctuation imaging (fcsSOFI) has been shown to extract nanoscale structure and Brownian diffusion dynamics within gels, liquid crystals, and polymers, but has limitations which hinder its wider application to more diverse, biophysically-relevant datasets. Here, we parallelize the least-squares curve fitting step on a GPU improving computation times by up to a factor of 40, implement anomalous diffusion and two-component Brownian diffusion models, and make fcsSOFI more accessible by packaging it in a user-friendly GUI. We apply fcsSOFI to simulations of the protein fibrinogen diffusing in polyacrylamide of varying matrix densities and super-resolve locations where slower, anomalous diffusion occurs within smaller, confined pores. www.selleckchem.com/ALK.html The improvements to fcsSOFI in speed, scope, and usability will allow for the wider adoption of super-resolution correlation analysis to diverse research topics.To increase the manufacturing throughput and lower the cost of silicon photonics packaging, an alignment tolerant approach is required to simplify the process of fiber-to-chip coupling. Here, we demonstrate an alignment-tolerant expanded beam backside coupling interface (in the O-band) for silicon photonics by monolithically integrating microlenses on the backside of the chip. After expanding the diffracted optical beam from a TE-mode grating through the bulk silicon substrate, the beam is collimated with the aid of microlenses resulting in an increased coupling tolerance to lateral and longitudinal misalignment. With an expanded beam diameter of 32 μm, a ±7 μm lateral and a ±0.6° angular fiber-to-microlens 1-dB alignment tolerance is demonstrated at the wavelength of 1310 nm. Also, a large 300 μm longitudinal alignment tolerance with a 0.2 dB drop in coupling efficiency is obtained when the collimated beam from the microlens is coupled into a thermally expanded core single-mode fiber.Large effect pigments, widely used in various fields of industrial applications, produce characteristic visual textures known as sparkle and graininess, which need to be quantified by objective or subjective methods. The development of preliminary measurement scales for sparkle and graininess, whose recommendation is now under discussion in the International Commission on Illumination (CIE), is described in this article. These scales are absolute, linear and traceable to standards of optical radiation metrology. The main purpose of this article is to justify the convenience of adopting these preliminary measurements scales, showing clear evidence that they correlate well with subjective evaluations. Before standardization, these scales need to be validated with more experimental data, including different specimens and experimental systems from other research groups.Volumetric light transport is a pervasive physical phenomenon, and therefore its accurate simulation is important for a broad array of disciplines. While suitable mathematical models for computing the transport are now available, obtaining the necessary material parameters needed to drive such simulations is a challenging task direct measurements of these parameters from material samples are seldom possible. Building on the inverse scattering paradigm, we present a novel measurement approach which indirectly infers the transport parameters from extrinsic observations of multiple-scattered radiance. The novelty of the proposed approach lies in replacing structured illumination with a structured reflector bonded to the sample, and a robust fitting procedure that largely compensates for potential systematic errors in the calibration of the setup. We show the feasibility of our approach by validating simulations of complex 3D compositions of the measured materials against physical prints, using photo-polymer resins. As presented in this paper, our technique yields colorspace data suitable for accurate appearance reproduction in the area of 3D printing. Beyond that, and without fundamental changes to the basic measurement methodology, it could equally well be used to obtain spectral measurements that are useful for other application areas.Perfect absorbers are highly desired in many engineering and military applications, including radar cross section (RCS) reduction, cloaking devices, and sensor detectors. However, most types of present absorbers can only absorb space propagation waves, yet absorption for the surface wave (SW) has not been researched intensively. In reality, when the space wave illuminates on the metal under large oblique angles, surface waves can be excited on the interface between metal and dielectric and thus would increase the RCS and influence the stealth performance. Here, based on the wave vector and impedance matching theories, we propose a broadband absorber for the surface wave under spoof surface plasmon polariton (SSPP) mode. The former theory ensures that surface waves can enter the absorber efficiently, and the latter guarantees perfect absorption. The experimental results indicate that our absorber can achieve a broadband (9.4-18 GHz) performance with an absorption ratio better than 90%, which is in great agreement with the simulations. Therefore, our device can be applied in RCS reduction for the metal devices, antenna array decoupling and many other applications. Also, this work provides a unique methodology to design new types of broadband surface wave absorbers.Multifunctional metasurfaces have exhibited considerable abilities of manipulating electromagnetic (EM) waves, especially in full-space manipulation. However, most works are implemented with functions controlled by polarization or frequency and seldom involve the incidence angle. Herein, we propose a multifunctional full-space metasurface controlled by frequency, polarization and incidence angle. A meta-atom is firstly designed. When EM waves illumine normally in the C-band, it possesses the characteristic of asymmetric transmission with high-efficient polarization conversion. In the Ku-band, both x- and y-polarized EM waves along both sides will be reflected and achieve broadband and high-efficient cross-polarization conversion. Also, when illumined obliquely, both sides can achieve efficient retroreflection at a certain frequency. As a proof of concept, a metasurface consisting of the above meta-atoms is configured as a dual orbital angular momentum (OAM) vortex beam generator and different beam deflector when illumined normally. Meanwhile, it acts as a multi-channel retroreflector when illumined obliquely. Both the simulated and measured results show excellent performances. Our findings provide a new degree of freedom to design multifunctional metasurfaces that can further promote applications.We propose and experimentally demonstrate a spurious level and phase noise improved Fourier domain mode-locked optoelectronic oscillator (FDML-OEO) based on a self-injection-locking (SIL) technique. The scheme applies a dual-loop FDML-OEO structure, in which a long optical fiber delay loop is used to injection-lock the OEO with a short oscillating optical fiber delay loop. SIL is achieved so long as the delay of the long loop is tuned at the integral multiple of the oscillation loop. The spur suppression ratio of the wideband linear frequency modulated (LFM) signal generated by the FDML-OEO can be improved by 14 dB under SIL. Furthermore, the modification of the spur suppression ratio depending on the injection power is also demonstrated. The phase noise of the proposed OEO is -127.5 dBc/Hz at 10 kHz offset, which is much improved comparing with a free-running OEO.All-dielectric metasurfaces exhibit exotic electromagnetic responses, similar to those obtained with metal-based metamaterials. Research in all-dielectric metasurfaces currently uses relatively simple unit-cell designs, but increased geometrical complexity may yield even greater scattering states. Although machine learning has recently been applied to the design of metasurfaces with impressive results, the much more challenging task of finding a geometry that yields a desired spectra remains largely unsolved. We propose and demonstrate a method capable of finding accurate solutions to ill-posed inverse problems, where the conditions of existence and uniqueness are violated. A specific example of finding the metasurface geometry which yields a radiant exitance matching the external quantum efficiency of gallium antimonide is demonstrated. We also show how the neural-adjoint method can intelligently grow the design search space to include designs that increasingly and accurately approximate the desired scattering response. The neural-adjoint method is not restricted to the case demonstrated and may be applied to plasmonics, photonic crystal, and other artificial electromagnetic materials.Optical terahertz technology has, despite its exciting properties, such as transparency of visibly opaque materials, 30 years after its technological breakthrough, not found a widespread application with societal relevance. Main causes are its maturity and costs. If, however, the uniqueness of both THz radiation and time-domain spectroscopy is used to close a technological gap in the right market sector, we here show that successful applications are in reach. We have chosen the automotive industry, where the optimization of coatings applied in the paint shop is of longstanding concern for this most expensive unit of the car production line. Here we report on the development of a THz-based sensor system. We study the light-matter interaction of drying polymer coatings and use advanced novel signal processing algorithms to determine the state of matter of drying paints. This very first sensor system for the inspection of wet coatings that accurately predicts the eventual dry thickness without requiring paint-type calibration.
Here's my website: https://www.selleckchem.com/ALK.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.