Notes
![]() ![]() Notes - notes.io |
The structure and morphology of the produced nanotubes were confirmed through X-ray Diffractometer (X-RD) and Scanning Electron Microscopy (SEM). The environmental application of the nanotubes was tested in a synthetic chromium solution in the lab using a batch experiment. Different experimental conditions (pH, adsorbent dosage, and contact time) were optimized to improve the adsorption of Cr (VI) by carbon nanotubes and a UV-Visible spectrophotometer was used at 540 nm to measure the absorbance of Cr (VI). The results showed that up to 81.83% of Cr (VI) removal was achieved by using 8 mg of CNTs at pH 3 with 400 rpm at 180 min of contact time. Thus, it was concluded that poultry litter can be a useful source for the synthesis of MWCNTs and thereby removal of Cr (VI) from industrial tanneries' wastewater.The relationship between the angles of misorientation of macroscopic low-angle boundaries (LABs) and changes in the lattice parameter of the γ'-phase around the LABs in the root of single-crystalline (SX) turbine blades made of CMSX-4 superalloy were studied. The blades with an axial orientation of the [001] type were solidified using an industrial Bridgman furnace with a 3 mm/min withdrawal rate. X-ray diffraction topography, the EFG Ω-scan X-ray diffraction method, scanning electron microscopy, and Laue diffraction were used to study the thin lamellar samples with a thickness of 0.5 mm and orientation of the surface perpendicular to the [001] direction. It is found that in the areas with a width of a few millimetres around LABs, decreases in the lattice parameter of the γ'-phase occur. These lattice parameter changes are related to the internal stresses of the γ'-phase caused by local changes in the concentration of alloying elements and/or to the dendrite bending near the LABs. X-ray topography used on two surfaces of thin lamellar samples coupled with the lattice parameter measurements of the γ'-phase near the LAB allows separating the misorientation component of LAB diffraction contrast from the component and visualising the internal stresses of the γ'-phase.Recently, there has been an increase in interest in agricultural waste in scientific, technological, environmental, economic, and social contexts. The processing of rice husk ash/rice straw ash into biocompatible products-also known as biomaterials-used in biomedical implants is a technique that can enhance the value of agricultural waste. This method has effectively converted unprocessed agricultural waste into high-value products. Rice husk and straw are considered to be unwanted agricultural waste and are largely discarded because they pollute the environment. Because of the related components present in bone and teeth, this waste can produce wollastonite. Wollastonite is an excellent material for bone healing and implants, as well as tissue regeneration. The use of rice husk ash or rice straw ash in wollastonite production reduces the impact of agricultural waste on pollution and prompts the ensuing conversion of waste into a highly beneficial invention. The use of this agricultural waste in the fabrication of wollastonite using rice husk ash or rice straw ash was investigated in this paper. Wollastonite made from rice husk ash and rice straw ash has a fair chance of lowering the cost of bone and tooth repair and replacement, while having no environmental effects.
Augmentation of the edentulous atrophic anterior region is a challenging situation. The purpose of this article was to evaluate the effectiveness of a collagenated cortical bone lamina of porcine origin for horizontal ridge augmentation in patients with inadequate alveolar ridge width undergoing immediate post-extraction implantation in the anterior sites, and to report on implant survival rates/complications.
The cases were extracted electronically from a large database according to these specific inclusion criteria patients with inadequate alveolar ridge width in the anterior maxilla or mandible, who underwent immediate post-extraction implant placement and simultaneous alveolar bone reconstruction using xenogeneic cortical bone lamina. An additional layer of palatal connective tissue graft was inserted between lamina and the vestibular mucosa, for improving soft tissue healing. A collagenated bone substitute was additionally placed in the gap between the lamina and implant surface in all patients. The main outcomes were implant survival and complications.
Forty-nine patients with 65 implants were included. Patients' mean age at the time of implant surgery was 60.0 ± 13.6 years. The mean follow-up was 60.5 ± 26.6 months after implant placement. The implant survival was 100%. Four postoperative complications occurred in four patients. No specific factor was found to be associated with complication occurrence.
The use of collagenated cortical bone lamina can be considered as a successful option for alveolar reconstruction in immediate post-extraction implant insertion procedures in anterior regions with inadequate alveolar ridge width.
The use of collagenated cortical bone lamina can be considered as a successful option for alveolar reconstruction in immediate post-extraction implant insertion procedures in anterior regions with inadequate alveolar ridge width.Independent lung ventilation (ILV) is a life-saving procedure in unilateral pulmonary pathologies. selleck chemical ILV is underused in clinical practice, mostly due to the technically demanding placement of a double lumen endotracheal tube (ETT). Moreover, the determination of ventilation parameters for each lung in vivo is limited. In recent years, the development of 3D printing techniques enabled the production of highly accurate physical models of anatomical structures used for in vitro research, considering the high risk of in vivo studies. The purpose of this study was to assess the influence of double-lumen ETT on the gas transport and mixing in the anatomically accurate 3D-printed model of the bronchial tree, with lung lobes of different compliances, using various ventilation modes. The bronchial tree was obtained from Respiratory Drug Delivery (RDD Online, Richmond, VA, USA), processed and printed by a dual extruder FFF 3D printer. The test system was also composed of left side double-lumen endotracheal tube, Siemens Test Lung 190 and anesthetic breathing bag (as lobes). Pressure and flow measurements were taken at the outlets of the secondary bronchus. The measured resistance increased six times in the presence of double-lumen ETT. Differences between the flow distribution to the less and more compliant lobe were more significant for the airways with double-lumen ETT. The ability to predict the actual flow distribution in model airways is necessary to conduct effective ILV in clinical conditions.Hybrid slabs made of carbon-fiber-reinforced polymer (CFRP) and concrete provide a solution that takes advantage of the strength properties of both materials. The performance of the system strongly depends on the CFRP-concrete interaction. This study investigates the shear behavior in the interface of the two materials. Eight full-scale experiments were carried out to characterize the interface shear response of these hybrid elements using different connection solutions. An untreated surface is compared to a surface with aggregates, with a novel system comprising a flexible, straight glass fiber mesh and an inclined glass fiber mesh. The experimental results show that the fabric connection improves the friction between materials and is responsible for the pseudo-plastic performance of the specimens. The inclined mesh produces a more uniform tightening effect compared to the straight mesh. In simulations via the finite element method, we used an adjusted frictional model to reproduce the experiments.Interlayer bonding quality is the key to the stability and durability of dam concrete. In this study, interlayer splitting tensile strength, relative permeability coefficient, and electric flux of dam concrete at different temperatures were tested. The relationships between equivalent age and strength coefficient, relative permeability coefficient ratio, and electric flux ratio were established. Meanwhile, a comprehensive early-warning and control system of dam interlayer bonding quality based on the above relationships was proposed. The results showed that the interlayer mechanical properties, impermeability, and anti-chloride ion permeability of dam concrete decreased with the increase of temperature. Moreover, the equivalent age was linearly correlated with strength coefficient, relative permeability coefficient ratio, and electric flux ratio of concrete. The correlation coefficients were 0.986, 0.973, and 0.924, respectively. In addition, the interlayer bonding quality of dam concrete can be effectively controlled by the early-warning system established according to the relationship between equivalent age and interlayer properties parameters.Cryogelation is a developing technique for the production of polysaccharide materials for biomedical applications. The formation of a macroporous structure during the freeze-drying of polysaccharide solutions creates biomaterials suitable for tissue engineering. Due to its availability, biocompatibility, biodegradability, and non-toxicity, chitin is a promising natural polysaccharide for the production of porous materials for tissue engineering; however, its use is limited due to the difficulty of dissolving it. This work describes the preparation of cryogels using phosphoric acid as the solvent. Compared to typical chitin solvents phosphoric acid can be easily removed from the product and recovered. The effects of chitin dissolution conditions on the structure and properties of cryogels were studied. Lightweight (ρ 0.025-0.059 g/cm3), highly porous (96-98%) chitin cryogels with various heterogeneous morphology were produced at a dissolution temperature of 20 ± 3 °C, a chitin concentration of 3-15%, and a dissolution time of 6-25 h. The crystallinity of the chitin and chitin cryogels was evaluated by 13C CP-MAS NMR spectroscopy and X-ray diffractometry. Using FTIR spectroscopy, no phosphoric acid esters were found in the chitin cryogels. The cryogels had compressive modulus E values from 118-345 kPa and specific surface areas of 0.3-0.7 m2/g. The results indicate that chitin cryogels can be promising biomaterials for tissue engineering.The superimposed magnetic field affects the microstructure and mechanical properties of additively manufactured metal parts. In this work, the samples were fabricated from Inconel 718 superalloy by directed energy deposition under a 0.2 T static field. The magnetohydrodynamic 1D model is proposed for the estimation of a fluid flow inside a molten pool. According to the theoretical predictions, the fluid flow is slightly decreased by an applied field. The estimated thermoelectric magnetic convection in the mushy zone is shown to be negligible to change in subgrain size, but enough to reduce the hard-to-dissolve Nb-rich phase, thereby improving the average ultimate elongation from 23% to 27%. The obtained results confirm that an external static magnetic field can modify and enhance the mechanical properties of additively manufactured materials.
Homepage: https://www.selleckchem.com/products/gsk3685032.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team