NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

A genuine Example of the Full-Scale Anaerobic Digestion of food Grow Powered by Olive By-Products.
Variations of functional traits with leaf age reflect plant life history strategy and indicate allocation pattern and trade-off characteristics in the limiting resource. In this study, leaves with different ages of Taxus wallichiana var. chinensis saplings were taken as experimental materials. Fourteen leaf functional traits of leaves at three differebt ages were measured in order to reveal changes of the saplings' ecological strategies with leaf aging. see more The results showed that one-year-old leaves had significantly higher specific leaf area than two- and three-year-old lea-ves, while three-year-old leaves had significantly greater leaf thickness, leaf area, volume, fresh weight and dry weight than leaves at other ages. In addition, one-year-old leaves had significantly greater nitrogen content (N), phosphorus content (P) and NP than two- and three-year-old leaves, but lower CN than three-old-year leaves. The slope of allometric relationship between leaf water content and dry weight, leaf thickness and leaf area of one-year-old leaves, leaf thickness and leaf area of three-year-old leaves were all significantly lower than 1.0. Two-year-old leaves showed significantly allometric relationships between many leaf traits, with slope being not equal to 1.0. In conclusion, one-year-old leaves of T. wallichiana var. chinensis saplings tended to have higher photosynthetic capacity, two-year-old leaves had stronger dry matter accumulation, and three-year-old leaves would construct defense system. The coordination and complementation of functional traits among leaves with different ages might have great significance for maintaining individual homeostasis and survival.To understand the impacts of mid-subtropical forest conversion on carbon and nutrient cycling, we conducted a 4-year investigation to examine litterfall, nutrient return and nutrient use efficiency of Castanopsis carlesii natural forest, C. carlesii secondary forest and Cunninghamia lanceolata plantation which were transformed from C. carlesii natural forest. The results showed that after C. carlesii natural forest was transformed into C. carlesii secon-dary forest and C. lanceolata plantation, the annual litter production decreased by 29.0% and 45.7%, nitrogen return of litter decreased by 34.0% and 72.7%, and phosphorus return decreased by 38.1% and 56.4%, respectively. The amount of carbon returned from litterfall in C. carlesii natural forest was 25.6% and 44.3% higher than that in C. carlesii secondary forest and C. lanceolata plantation, respectively. For C. lanceolata plantation, C. carlesii secondary forest and C. carlesii natural forest, nitrogen use efficiency of litterfall was 175.4, 94.8 and 92.0 kg·kg-1, respectively, and phosphorus use efficiency of litterfall was 3031.0, 2791.6 and 2537.2 kg·kg-1, respectively. It was concluded that C. lanceolata plantation was more limited by nitrogen compared with C. carlesii natural forest and secondary forest, and the effects of phosphorus limitation had similar effects on the three forests.The growth, biomass, nutrient content and accumulation as well as the vertical distribution of nutrient accumulation in Cunninghamia lanceolata plantation across densities of 1800, 3000, 4500 trees·hm-2 were stu-died in order to provide scientific basis for efficient cultivation of C. lanceolata plantation. The total amounts of nutrients accumulated in C. lanceolata plantation with 1800, 3000, 4500 trees·hm-2 were 1311.57, 2531.55 and 2307.33 kg·hm-2, respectively. There were significant variations among different densities. Under the same density, the order of nutrient content and accumulation in C. lanceolata plantation was total N > total K > total Ca > total Mg > total P. Moreover, the amount of nutrients in trunk and bark decreased with the increases of tree height. The amount of nutrient accumulation in persistent withered branch and leaf were allocated from middle to the upper part of tree, while the opposite was observed for fresh branch and leaf. N accumulation increased with the increases of stand densities, while the other nutrients first increased then decreased. The order of the amount of nutrient accumulation in trunk, bark, root, persistent withered branch, persistent withered leaf and litter among different densities was 4500 > 3000 > 1800 trees·hm-2, and was 3000 > 1800 > 4500 trees·hm-2 in fresh branch and leaf, and 1800 > 3000 > 4500 trees·hm-2 in understory. Under the densities of 1800 and 4500 trees·hm-2, the nutrient distribution ratio in bark was the largest, accounting for 21.6% and 19.4%. In 3000 trees·hm-2, the distribution ratio of fresh leaves reached its maximum, accounting for about 22.9%, and the next was fresh branches, which had a distribution ratio of about 17.8%. 3000 trees·hm-2 was the most appropriate density for nutrient accumulation and distribution in C. lanceolata plantation.Water use efficiency (WUE) of five dominant tree species (Pinus koraiensis, Fraxinus mandshurica, Acer mono, Quercus mongolica, and Tilia amurensis) was estimated using the stable carbon isotope method in a broadleaved Korean pine forest in Changbai Mountains. Leaf carbon (C), nitrogen (N), and phosphorus (P) contents were measured to analyze nutrient utilization of the dominant species. The relationship between WUE and leaf nutrient contents was systematically assessed. WUE was different due to the variations of micrometeorological factors at different locations in the canopy. The four broadleaved tree species showed upper layer > middle layer > lower layer, while P. koraiensis showed upper layer > lower layer > middle layer. WUE of evergreen coniferous P. koraiensis was higher than that of two broadleaved species with diffuse-porous wood (T. amurensis and A. mono) and lower than that of two broadleaved species with ring-porous wood (F. mandshurica and Q. mongolica). The compound-leaved species (F. mandshurica) had the highest WUE. The WUE of new leaves was significantly higher than old leaves in P. koraiensis. The carbon content and C/N of the old and new leaves of evergreen coniferous P. koraiensis were significantly higher than those of the other four broadleaved tree species, while nitrogen content and N/P were significantly lower than those of the four broadleaved tree species. P content of old leaves of P. koraiensis was significantly lower than that of the four broadleaved tree species. P content of new leaves of current year was not significantly different from that of the broadleaved tree species. The WUE of five tree species had a poor correlation with leaf C content, but a positive correlation with leaf N content. The WUE of evergreen coniferous and deciduous broadleaved tree species was correlated with leaf P content but in opposite direction.The aims of this study were to clarify the regeneration characteristics and dominant factors affecting the regeneration of three natural Juniperus forests in the Three-River Headwater Region of Qinghai Province, and thus to provide a reference for the protection and management of natural forests. We evaluated the natural regeneration levels of Juniperus forests, and the effects of stand factors and soil factors on natural regeneration. The results showed that three natural Juniperus forests were poorly regenerated, with insufficient regeneration potential. The average regeneration density of J. tibetica forest, J. przewalskii forest and J. convallium forest was 332, 279 and 202 ind·hm-2, respectively. The height range of regenerate individuals was concentrated in 1-3 m. Only a few seedlings (12 ind·hm-2) were found under the J. tibetica forest, and no seedlings were found under the J. convallium and J. przewalskii forests. The regeneration density of J. tibetica forest was significantly positively correlated , rationally regu-late the coverage of understory vegetation, increase soil fertility and improve biotope in the forest, which would promote the protection and natural regeneration of natural Juniperus forests in the Three-River Headwater Region.Based on the static life table and survival curve, we explored the population structure and dynamics of Korean pine (Pinus koraiensis) seedlings regenerated from seeds in three different forest belts of Korean pine plantation in a montane region of eastern Liaoning Province. The results showed that the age structure of Korean pine seedlings in three different forest belts (i.e., larch forest belt, mixed coniferous forest belt, and mixed broadleaved forest belt) showed a "∩" type of left skewed distribution. The abundance of seedlings was rich but the mortality rate was high in the early phase, and the abundance of seedlings decreased in the later phase, which indicated that the population was depressing. The survival curve of the population conformed to the Deevey-Ⅱ type. The life expectancy of Korean pine seedlings at each age class in larch forest belt was higher than that in mixed coniferous forest belt and mixed broadleaved forest belt. The survival analysis showed that the survival rate of Korean pine seedlings in three different forest belts decreased but the cumulative mortality rate increased with increasing age. The death density function tended to be flat after the age class of Ⅱ-Ⅲ, while the risk function value showed a decreasing trend with the increases of age. The time series predictive analysis showed that the population showed a certain growth trend with increasing age class, indicating that the population could achieve natural regeneration and have a certain growth potential, but with regeneration obstacles.Pulmonary veno-occlusive disease (PVOD) and idiopathic/heritable pulmonary arterial hypertension (I/HPAH) cause progressive PH on the distinct genetic impact. A 29-month-old boy presented with a loss of consciousness. He had severe PH refractory to pulmonary vasodilators. Hypoxemia and ground-glass opacity on the chest computed tomography were present, and significant pulmonary edema developed after the introduction of continuous intravenous prostaglandin I2 . Based on the clinical diagnosis of PVOD, he underwent a single living-donor lobar lung transplantation with the right lower lobe of his mother. The pathological findings of his explanted lung showed intimal thickening and luminal narrowing of the pulmonary vein. A genetic test revealed a novel heterozygous splice acceptor variant (c.77-2A>C) in BMPR2, which is typically associated with I/HPAH. This is the first pediatric case of PVOD with BMPR2 variant, supporting the concept that I/HPAH and PVOD are part of a spectrum of pulmonary vascular disease.A surface adsorption strategy is developed to enable the engineering of microcomposites featured with ultrahigh loading capacity and precise ratiometric control of co-encapsulated peptides. In this strategy, peptide molecules (insulin, exenatide, and bivalirudin) are formulated into nanoparticles and their surface is decorated with carrier polymers. This polymer layer blocks the phase transfer of peptide nanoparticles from oil to water and, consequently, realizes ultrahigh peptide loading degree (up to 78.9%). After surface decoration, all three nanoparticles are expected to exhibit the properties of adsorbed polymer materials, which enables the co-encapsulation of insulin, exenatide, and bivalirudin with a precise ratiometric control. After solidification of this adsorbed polymer layer, the release of peptides is synchronously prolonged. With the help of encapsulation, insulin achieves 8 days of glycemic control in type 1 diabetic rats with one single injection. The co-delivery of insulin and exenatide (11) efficiently controls the glycemic level in type 2 diabetic rats for 8 days.
Read More: https://www.selleckchem.com/products/brd3308.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.