NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Numerous Distinct Ways Lead to Medicine Weight in BRAF- along with NRAS-Mutated Melanomas.
For the smallest poly-Si feature of 230 nm, the absolute error is approximately 25 nm.Extending the field-of-view (FoV) of underwater wireless optical communication (UWOC) receivers can significantly ease the need for active positioning and tracking mechanisms. Two bundle of scintillating fibers emitting at 430- and 488-nm were used to detect two independent signals from ultraviolet and visible laser sources. A zero-forcing approach to minimize inter-channel crosstalk was further implemented. A net aggregated UWOC data rate of 1 Gb/s was achieved using two wavelengths and a non-return-to-zero on-off keying scheme.We present the development of a compact (about 1.3 × 2.0 × 20 mm3) freeform optical lightguide for sensing applications, from the conceptual design to the fabrication through injection molding. The design of the optic is based on the flow-line method from Nonimaging Optics, which allows the desired optical functionalities (45° half-acceptance and 40° beam steering) while meeting particularly tight mechanical and geometrical constraints. An extensive analysis of the effects of fabrication parameters on the performances demonstrates the importance of minimizing the fillet radius. This requisite inspired a special procedure for designing the mold, which is built as a "3D puzzle" assembly of separate pieces, each one dedicated to one specific side surface of the lightguide. This technique enables uniform optical quality on all the optic's surfaces and removes the need of a fillet radius in the mold. At present, the first lightguide prototypes have been fabricated; after the coating phase, they will be ready for the validation stage.Vibration can easily affect the structure of long baseline binocular vision sensors, resulting in changes in the external parameters of the binocular calibration model and the failure of measurement method. This paper presents an online stereo vision measurement based on correction of sensor structural parameters. The flexible structure model based on calibration model and iterative gradient descent nonlinear optimization model based on 3D redundant information are established. The optimal estimation of external parameters and object position measurement are realized according to multi-information constraints. Experiments show that this method can effectively solve the measurement failure caused by vibration in stereo vision measurement.Tunable single-longitudinal-mode (SLM) ring HoYLF laser with intra-cavity isolator is investigated for 2.05 µm and 2.06 µm band based on single resonator, which is realized dual-band SLM laser conversion by a polarizer. Up to 548 mW SLM power with beam quality factor M2 of 1.1 is achieved at wavelength of 2064.63 nm, and the corresponding slope efficiency is 26.7%. Wavelength tuning ranges from 2063.91 nm to 2065.71 nm and 2050.65nm to 2053.15nm can be demonstrated. The highest SLM power around P12 and R30 CO2 absorption peak of 2064.41 nm and 2050.96 nm are 540 mW and 500 mW, respectively. The power instability within 30 minutes is around 0.14%. As we know, dual-band switched HoYLF laser operation at SLM with wavelength tunability is reported for the first time for the potential application of CO2 differential absorption lidar.A mask-based lensless camera adopts a thin mask to optically encode the scene and records the encoded pattern on an image sensor. The lensless camera can be thinner, lighter and cheaper than the lensed camera. But additional computation is required to reconstruct an image from the encoded pattern. Considering that the significant application of the lensless camera could be inference, we propose to perform object recognition directly on the encoded pattern. Avoiding image reconstruction not only saves computational resources but also averts errors and artifacts in reconstruction. We theoretically analyze multiplexing property in mask-based lensless optics which maps local information in the scene to overlapping global information in the encoded pattern. To better extract global features, we propose a simplified Transformer-based architecture. This is the first time to study Transformer-based architecture for encoded pattern recognition in mask-based lensless optics. In the optical experiment, the proposed system achieves 91.47% accuracy on the Fashion MNIST and 96.64% ROC AUC on the cats-vs-dogs dataset. The feasibility of physical object recognition is also evaluated.Compressive sensing has been widely used in single photon imaging systems because of its advantages of high efficiency and low cost. However, when the received photon flux is large, some photons cannot be recorded by single photon detectors due to the dead time effect, which introduces nonlinear errors between the measurement results and actual values and further damages the imaging quality. In this paper, a photon counting correction method specific to paralyzable detectors is proposed to improve the quality of reconstructed images in single photon compressive imaging systems. To verify this method, a single photon compressive imaging system is built, which uses a digital micromirror device (DMD) to modulate the light and a PMT as the single photon detector. The Monte Carlo simulation is also implemented to double validate the performance of the proposed method and the results from the experiment. Peak signal-to-noise ratio (PSNR) is used as the imaging quality evaluation standard. The experimental and simulation results indicate that our method can overcome negative effect of the dead time and accurately recover the intensity and waveform shape of echo signal, which can significantly improve the quality of reconstructed images and has a better performance than traditional methods in the single photon compressive imaging system.By numerically solving the time-dependent Schrödinger equation, we theoretically study strong-field tunneling ionization of Ar atom in the parallel two-color field which consists of a strong fundamental pulse and a much weaker second harmonic component. Based on the quantum orbits concept, we analyzed the photoelectron momentum distributions with the phase-of-the-phase spectroscopy, and the relative contributions of the two parts of the photoelectrons produced during the rising and falling edges of the adjacent quarters of the laser cycle are identified successfully. Our results show that the relative contributions of these two parts depend on both of the transverse and longitude momenta. By comparing the results from model atoms with Coulomb potential and short-range potential, the role of the long-range Coulomb interaction on the relative contributions of these two parts of electrons is revealed. Additionally, we show that the effects of Coulomb interaction on ionization time are vital for identifying their relative contributions.All-dielectric binary gratings, with and without slab waveguides, are designed to generate polarization-independent guided-mode resonance filters (GMRFs) operating in the THz frequency region using the rigorous coupled-wave analysis (RCWA) method. The filling factor and thickness of the grating were adjusted to have equal resonance frequencies of transverse electric (TE)- and transverse magnetic (TM)-polarized THz beams. The single polarization-independent resonance for a binary grating without a slab waveguide was obtained at 0.459 THz with full width at half maximum (FWHM) values of 8.3 and 8.5 GHz for the TE and TM modes, respectively. Moreover, double-layered polarization-independent resonances for binary gratings with slab waveguides were obtained at 0.369 and 0.442 THz with very high Q-factors of up to 284. This is the first study to propose a polarization-independent GMRF with two resonant frequencies.The determination of chirality of circularly polarized light (CPL) is of great significance to the development of various optical techniques. In this paper, a miniature circular polarization analyzer (CPA) based on surface plasmon polariton (SPP) interference is proposed. The proposed CPA consists of a micron scale long sub-wavelength slit and two groups of spatially arranged periodic sub-wavelength rectangular groove pairs, which are etched in a metal layer. Under the illumination of a CPL with a given chirality, the proposed CPA is capable of forming SPP-mediated interference fringes with different periods in far field. The chirality of CPL can be directly and quantitatively differentiated by the frequency value of the far field SPP-mediated interference fringes. Different from the existing SPP-based CPAs, the proposed CPA can directly image the chirality information in far field, avoiding near-field imaging of the SPP field.Ptychography-based lensless on-chip microscopy enables high-throughput imaging by retrieving the missing phase information from intensity measurements. Numerous reconstruction algorithms for ptychography have been proposed, yet only a few incremental algorithms can be extended to lensless on-chip microscopy because of large-scale datasets but limited computational efficiency. In this paper, we propose the use of accelerated proximal gradient methods for blind ptychographic phase retrieval in lensless on-chip microscopy. Incremental gradient approaches are adopted in the reconstruction routine. Our algorithms divide the phase retrieval problem into sub-problems involving the evaluation of proximal operator, stochastic gradient descent, and Wirtinger derivatives. We benchmark the performances of accelerated proximal gradient, extended ptychographic iterative engine, and alternating direction method of multipliers, and discuss their convergence and accuracy in both noisy and noiseless cases. We also validate our algorithms using experimental datasets, where full field of view measurements are captured to recover the high-resolution complex samples. selleck kinase inhibitor Among these algorithms, accelerated proximal gradient presents the overall best performance regarding accuracy and convergence rate. The proposed methods may find applications in ptychographic reconstruction, especially for cases where a wide field of view and high resolution are desired at the same time.Aiming at maintaining the chromatic dispersion properties and fiber optical parametric amplification (FOPA) performance when fiber core fluctuation occurs, we propose a buffer step-index optical fiber. The AsSe2 chalcogenide glass is employed as the core material due to its high nonlinearity and broad transmission spectrum. The calculated results in this study show that the chromatic dispersion variation due to the change of core diameter can be greatly suppressed and a continuous and very broad FOPA signal gain spectrum can be obtained and maintained by carefully controlling the core, buffer and cladding properties such as refractive index and diameters. The calculated results in this study showed that by using the proposed 3-cm-long fiber pumped at 5.02 µm, a broad signal gain bandwidth from 3 to 14 µm at about 15 dB is attainable although the fiber core diameter Dc drastically fluctuated from 2 to 5 µm and the buffer diameter Db varies from 8.9 to 9.3 µm. Moreover, when Dc varies in smaller range from 3 to 4 µm, the FOPA signal gain spectra calculated at different fixed values of Db in the range from 8.9 to 9.3 µm are highly maintained. When Db is kept at 9.0 µm and Dc varies from 3 to 4 µm, the calculated FOPA signal gain spectra at different pump wavelengths from 4.98 to 5.02 µm are also nearly identical in the wavelength range from 3 up to 13 µm.
Read More: https://www.selleckchem.com/products/nesuparib.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.