Notes
![]() ![]() Notes - notes.io |
Harvested banana fruit ripened under warm temperatures above 24 °C remain green peel, leading to severe economic loss. E3 ubiquitin-ligases, as the major components in the ubiquitination pathway, have been implicated to play important roles in temperature-stress responses. However, the molecular mechanism underlying high temperature-triggered stay-green ripening bananas in association with E3 ubiquitin-ligases, remains largely unknown. In this study, a RING-type E3 ubiquitin ligase termed MaLUL2, was isolated and characterized from banana fruit. The MaLUL2 gene contains 1095 nucleotides and encodes a protein with 365 amino acids. The MaLUL2 protein contains a domain associated with RING2 (DAR2) and a RING domain, which are the typical characteristics of RING-type E3 ligases. MaLUL2 expression was up-regulated during high temperature-induced green ripening. Subcellular localization showed that MaLUL2 localized in the nucleus, cytoplasm, and plasma membrane. Z-DEVD-FMK MaLUL2 displayed E3 ubiquitin ligase activity in vitro. More importantly, transient overexpression of MaLUL2 in banana fruit peel increased the level of ubiquitination in vivo and led to a stay-green phenotype, accompanying with decreased expression of chlorophyll catabolic genes. Collectively, these findings suggest that MaLUL2 might act as a negative regulator of chlorophyll degradation and provide novel insights into the regulatory mechanism of high temperature-induced green ripening bananas.In this paper, we consider the influence of a divergence of polarization of a quantum signal transmitted through an optical fiber channel on the quantum bit error rate of the subcarrier wave quantum key distribution protocol. Firstly, we investigate the dependence of the optical power of the signal on the modulation indices' difference after the second phase modulation of the signal. Then we consider the Liouville equation with regard to relaxation in order to develop expressions of the dynamics of the Stokes parameters. As a result, we propose a model that describes quantum bit error rate for the subcarrier wave quantum key distribution depending on the characteristics of the optical fiber. Finally, we propose several methods for minimizing quantum bit error rate.One of the most controversial areas of nutrition research relates to fats, particularly essential fatty acids, in the context of cardiovascular disease risk. A critical feature of dietary fatty acids is that they incorporate into the plasma membrane, modifying fluidity and key physiological functions. Importantly, they can reshape the bioavailability of eicosanoids and other lipid mediators, which direct cellular responses to external stimuli, such as inflammation and chronic stress conditions. This paper provides an overview of the most recent evidence, as well as historical controversies, linking fat consumption with human health and disease. We underscore current pitfalls in the area of fatty acid research and critically frame fatty acid intake in the larger context of diet and behavior. We conclude that fundamental research on fatty acids and lipids is appropriate in certain areas, but the rigor and reproducibility are lacking in others. The pros and cons are highlighted throughout the review, seeking to guide future research on the important area of nutrition, fat intake, and cardiovascular disease risk.The Brahmaputra River is the largest tropical river in India that flows along the Himalayan regions and it is the lifeline of millions of people. Metal fractionation in the Brahmaputra River's surface sediments and its correlation with turbidity are assessed in this study. The interaction between metal fractions and the overlying water is studied using multivariate statistical analyses. The strong positive correlation between NH4 of the overlying water and the exchangeable fractions in sediments signifies that the metals in the exchangeable fractions can be substituted by NH4. Subsequently, these metals can be released into the overlying water. The fluctuation in turbidity from 73 to 875 NTU indicates a large variation in the suspended matter concentration, and a higher concentration of suspended matter could provide attachment sites for pollutants such as metals. Significant variation in turbidity manifests a potentially high risk of pollution. In addition, the observation of local people along the Brahmaputra River turning its color to muddy indicates the need for continuous monitoring of water quality and an assessment of pollution is crucial. Although the Brahmaputra River's risk assessment code is at low risk, the exchangeable fractions of Ni and Zn are present at all sites. Thus, the Brahmaputra River requires early preventive measures and management strategies to control metal pollution. This study contributes to an understanding of the fluctuation of turbidity of a tropical river. We provide baseline data for policymakers, and the importance of further intensive studies on metal pollution in the Himalayan Rivers is highlighted.This report presents the synthesis and folate receptor target-specificity of amino-functionalized polyacrylamide nanoparticles (AFPAA NPs) for near-infrared (NIR) fluorescence imaging of cancer. For the synthesis of desired nano-constructs, the AFPAA NPs (hereafter referred to as NPs) were reacted with a NIR cyanine dye (CD) bearing carboxylic acid functionality by following our previously reported approach, and the resulting conjugate (NP-CD) on further reaction with folic acid (FA) resulted in a new nano-construct, FA-NP-CD, which demonstrated significantly higher uptake in folate receptor-positive breast cancer cells (KB+) and in folate receptor over-expressed tumors in vivo. The target-specificity of these nanoparticles was further confirmed by inhibition assay in folate receptor-positive (KB+) and -negative (HT-1080) cell lines. To show the advantages of polyacrylamide (PAA)-based NPs in folate receptor target-specificity, the CD used in preparing the FA-NP-CD construct was also reacted with folic acid alone and the synthetic conjugate (CD-FA) was also investigated for its target-specificity. Interestingly, in contrast to NPs (FA-NP-CD), the CD-FA conjugate did not show any significant in vitro or in vivo specificity toward folate receptors, showing the advantages of PAA-based nanotechnology in delivering the desired agent to tumor cells.Soluble suppression of tumorigenesis-2 (sST2) has been introduced as a marker associated with heart failure (HF) pathophysiology and status. Endothelial dysfunction is a component underlying HF pathophysiology. Therefore, we examined the association of arterial wall properties with sST2 levels in patients with HF of ischemic etiology. We enrolled 143 patients with stable HF of ischemic etiology and reduced left ventricular ejection fraction (LVEF) and 77 control subjects. Flow-mediated dilation (FMD) was used to evaluate endothelial function and pulse wave velocity (PWV) to assess arterial stiffness. Although there was no significant difference in baseline demographic characteristics, levels of sST2 were increased in HF compared to the control (15.8 (11.0, 21.8) ng/mL vs. 12.5 (10.4, 16.3) ng/mL; p less then 0.001). In the HF group, there was a positive correlation of sST2 levels with age (rho = 0.22; p = 0.007) while there was no association of LVEF with sST2 (rho = -0.119; p = 0.17) nor with PWV (rho = 0.1; p = 0.23). Interestingly, sST2 was increased in NYHA III [20.0 (12.3, 25.7) ng/mL] compared to patients with NYHA II (15.0 (10.4, 18.2) ng/mL; p = 0.003) and inversely associated with FMD (rho = -0.44; p less then 0.001) even after adjustment for possible confounders. In patients with chronic HF of ischemic etiology, sST2 levels are increased and are associated with functional capacity. There is an inverse association between FMD and sST2 levels, highlighting the interplay between the dysfunctional endothelium and HF pathophysiologic mechanisms.Accumulating epidemiological evidence suggests that anthocyanin intake is associated with reduced risks of cardiometabolic disorders, highlighting the importance of incorporating the phytochemical in our diets. Numerous food-based intervention studies have examined, in controlled meal settings, the role of anthocyanin on cardiometabolic health; but their effects have not been systematically summarized. This study aims to systematically review and summarize the effects of anthocyanin consumption with composite meals on cardiometabolic health from randomized controlled feeding trials. A systematic literature search for relevant human nutritional intervention studies was performed using PubMed, Embase, Cochrane Library, CINAHL Plus with Full Text, and Scopus databases. The Cochrane Risk of Bias tool was used to assess the study quality. Eighteen articles involving 371 participants were included in this review. Consistent improvements from anthocyanin intake were found in glycemic, gastric inhibitory peptide (GIP), interleukin-6 (IL-6), and oxygen radical absorbance capacity (ORAC) responses. Anthocyanin intake did not significantly affect other markers of energy metabolism, vascular functions, oxidative stress and antioxidant status, as well as inflammatory responses. Inconsistencies in successful outcomes between epidemiological studies and included interventions were largely attributed to matrix effects, which may impede the bioaccessibility of anthocyanins and consequently, limiting its health benefits when co-delivered with some foods.Early childhood caries (ECC) remains the single most common chronic childhood disease. Untreated caries can cause tooth loss and compromised dentition. Severe ECC can also influence nutrition intake, cognitive development, general health and quality of life. In Hong Kong, approximately half of 5-year-old children suffer from ECC, and more than 90% of these caries remain untreated. Thus, the development of effective strategies for promoting the oral health of preschool children is warranted. The Faculty of Dentistry of the University of Hong Kong has provided kindergarten-based dental outreach services to selected kindergartens since 2008. In 2020, the project expanded to serve all kindergarten children in Hong Kong. The aim of the service is to improve oral health through the prevention and control of ECC among preschool children. The service provides dental screening and silver diamine fluoride treatment for ECC management. In addition, the parents receive oral health talks, and teachers receive training in delivering regular oral health education at kindergarten. The objectives of this service are to improve oral and general health of preschool children, develop the children's good oral health-related behaviours, maintain the children's psychological well-being and reduce the burden on their family. This paper describes this kindergarten-based dental outreach service.The search for anticancer metal-based drugs alternative to platinum derivatives could not exclude zinc derivatives due to the importance of this metal for the correct functioning of the human body. Zinc, the second most abundant trace element in the human body, is one of the most important micro-elements essential for human physiology. Its ubiquity in thousands of proteins and enzymes is related to its chemical features, in particular its lack of redox activity and its ability to support different coordination geometries and to promote fast ligands exchange. Analogously to other trace elements, the impairment of its homeostasis can lead to various diseases and in some cases can be also related to cancer development. However, in addition to its physiological role, zinc can have beneficial therapeutic and preventive effects on infectious diseases and, compared to other metal-based drugs, Zn(II) complexes generally exert lower toxicity and offer few side effects. Zinc derivatives have been proposed as antitumor agents and, among the great number of zinc coordination complexes which have been described so far, this review focuses on the design, synthesis and biological studies of zinc complexes comprising N-donor ligands and that have been reported within the last five years.
Homepage: https://www.selleckchem.com/products/z-devd-fmk.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team