Notes
![]() ![]() Notes - notes.io |
Classical swine fever virus (CSFV), an enveloped virus belonging to the genus Pestivirus of the Flaviviridae family, utilizes cell host factors for its own replication. ARFGAP1, GTPase activating protein of ADP-ribosylation factor 1, regulates COP I vesicle formation and function in cells and is involved in the life cycle of several viruses. However, the effect of ARFGAP1 on the infection of CSFV has not been illustrated. Here we showed that inhibition of ARFGAP1 either by QS11 or by lentivirus-mediated silencing repressed CSFV replication. While, subsequent experiments revealed that CSFV production were increased in cells with sufficient ARFGAP1 expression. However, ARFGAP1 was not involved in CSFV binding, entry, access to cell vesicles, and RNA replication during the early stages of infection. Then, we showed that ARFGAP1 interacted with the viral protein of NS5A, measured by immunoprecipitation, GST-pulldown, and confocal microscopy assays. Furthermore, we revealed that ARFGAP1 could alleviated CSFV NS5A-induced endoplasmic reticulum stress (ERS). Altogether, these results demonstrate that ARFGAP1, a NS5A binding protein, is involved in CSFV replication.The virion host shutoff (VHS) protein, encoded by the UL41 gene of herpes simplex virus (HSV), specifically degrades mRNA and induces host shutoff. VHS and its homologs are highly conserved in the Alphaherpesvirinae subfamily. 5-HT Receptor agonist However, the role of the duck plague virus (DPV) UL41 gene is unclear. In this study, we found that the DPV UL41 gene-encoded protein (pUL41) degrades RNA polymerase (pol) II-transcribed translatable RNA and induces protein synthesis shutoff. DPV pUL41 was dispensable for viral replication, but the UL41-deleted mutant virus exhibited a significant viral growth defect and plaque size reduction in Duck embryo fibroblast (DEF) cells. Furthermore, DPV pUL41 regulated viral mRNA accumulation to affect viral DNA replication, release and cell-to-cell spread.Boron is an essential plant micronutrient responsible for several important functions. Boron availability in soils may be influenced by binding with soil organic matter (SOM), particularly with aromatic diol and polyphenol groups on SOM. The mechanism by which aromatic diols bind boron, however, remains unclear. The objective of this work is to further investigate interaction between boric acid and varying concentrations of an aromatic, polyphenolic SOM analogue (tannic acid at 5, 10 and 20 g L-1) from pH = 5-9. UV/Visible spectroscopy showed boric acid enhanced tannic acid deprotonation at pH = 7.0 and 9.0, resulting in singly deprotonated tannic acid subunits. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) showed boric acid/tannic acid binding for all concentrations at pH = 7 and 9, whereas binding at pH = 5.0 was observed only at 20 g L-1 tannic acid. Uncomplexed boron species were not evident at pH = 9.0, but were detectable at pH = 7.0 at lower tannic acid concentrations and prevalent at pH = 5.0, qualitatively indicating binding affinity increases from pH = 5.0 to 9.0. ATR-FTIR results indicated tetrahedral coordination of boron upon complexation to tannic acid with a monodentate mechanism. These results collectively highlight a transition of solution planar boric acid to a tetrahedral, monodentate coordination with a single phenol group in tannic acid polyphenols. This contrasts with previous spectroscopic studies, which indicated bidentate tetrahedral or monodentate trigonal planar orientations prevail at aromatic diol sites. This work presents a previously unobserved boric acid coordination mechanism to an SOM analogue and, therefore, may better inform prediction and modeling of boron behavior in soils.Kaolinite and methoxy-modified kaolinite were used as novel adsorbents for oxytetracycline (OTC) removal and recovery from aqueous media. Batch adsorption experiments were performed to study the effect of pH, ionic strengths, initial concentration, and contact time on OTC adsorption. The adsorbents were characterized using powder X-ray diffraction (PXRD), Fourier-transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) before and after adsorption. Adsorption of OTC reached its maximum when solution pH increased up to 6 for 0.001 M ionic strength, above which adsorption decreased further when solution pH increased. Freundlich and Langmuir's models best fit the equilibrium data with a strong dependency on OTC adsorption capacity giving its maximum at 36 mg g-1. Binding is postulated for OTC adsorption on pristine kaolinite as a special case of Hill model with independent binding interaction of OTC adsorption onto the clay that affects the adjacent sites on the pristine kaolinite, in contrast with the adsorption of OTC on methoxy-modified kaolinite. Nitrogen peaks of the XPS spectra indicated changes in the oxidation states of C-N bonds in the N1s peaks by forming tertiary amide C-N and methoxy O-CH3 bonds which corroborated with the results from FTIR spectra. Removal efficiencies and spectroscopic results indicate that performance on methoxy-modified kaolinite is a promising modification on the clay for recovering antibiotics from wastewater.As important precursors of ozone and secondary organic aerosols, the harmful impact of exposure to ambient volatile organic compounds (VOCs) is of public health interest. However, few studies have investigated the health risks of numerous individual VOC species. This study linked the daily concentrations of 54 C2-C11 VOC species monitored from the Wanhua Photochemical Assessment Monitoring Station and hospital admissions for cardiorespiratory diseases in Taipei, Taiwan, from the National Health Insurance Research Database. A standard time-series approach entailing a series of sensitivity analyses was applied to investigate the short-term health risks of exposure to VOC subgroups and species. Consistent associations of all VOC subgroups and main species with chronic obstructive pulmonary disease (COPD) hospitalizations were demonstrated. In addition, associations of the C5-C6 alkanes, C2-C3 alkenes, toluene, and xylene with asthma hospitalizations were found, as were associations of aromatic hydrocarbons with hospitalizations for heart failure. An interquartile range increase in total VOC exposure at lag0 day (102.6 parts per billion carbon) was associated with increments of 1.84% (95% confidence interval 0.54%-3.15%), 1.65% (0.71%-2.60%), and 1.21% (0.36%-2.07%) in hospitalizations for asthma, COPD, and heart failure, respectively. The effect estimates were robust with data excluding extreme values, the second pollutant adjustment for PM2.5 and O3, and the Bonferroni correction. The associations of ambient VOC exposure with cardiorespiratory hospitalizations in Taipei serve as a reference for VOC regulations and ozone control strategies.Intercropping with Cicer arietinum L has been suggested to improve the Cd decontamination capacity of Festuca arundinacea. However, the mechanisms stimulating this effect have not been revealed. The current study was designed to evaluate the changes in the subcellular distribution and chemical forms of Cd in different leaf types of F. arundinacea intercropped with C. arietinum L under different schemes. The results indicated that more than half of the Cd was bound in the cell wall in plant organs under all planting schemes, showing that cell wall deposition is an important detoxication pathway for the metal. Relative to the monoculture scheme, coordinate and malposed intercropping schemes increased the Cd concentration deposited in the cytoplasm of below-ground tissues from 37.6% to 45.2% and 45.1%, respectively. Additionally, the proportion of inorganic and water-soluble Cd in the below-ground parts of F. arundinacea increased from 73.6% in the monoculture scheme to 80.6% and 84.7%, in the coordinate and malposed intercropping schemes, respectively. The results exhibited that intercropping schemes can activate the metal in below-ground tissues and move it to aerial parts. The present study revealed the promoting mechanism of intercropping schemes on the phytoremediation efficiency of F. arundinacea for Cd at a subcellular level.Solvent-based post-combustion CO2 capture process is recently carried out using chemical absorption with aqueous blends of Monoethanolamine (MEA) and Ionic Liquids (IL) as promising solvents. In the present work, the blends of MEA and TetraButylAmmonium Hydroxide [TBA][OH] have been used for CO2 absorption and desorption process. The solubility of CO2 is investigated with aqueous mixtures for various carbon loading time by varying compositions of MEA and [TBA][OH] as 30 wt%, 28 wt%, 25 wt%, 20 wt% and 0 wt%, 2 wt%, 5 wt%, 10 wt% respectively. It increases with increasing IL concentration for all the aqueous mixtures. The solvent regeneration was also studied at different temperatures in order to recover and reuse the solvent for cyclic absorption. The slight decrease in CO2 solubility was noted for 20 wt% MEA +10 wt% [TBA][OH] mixture. However, this mixture exhibits higher absorption/desorption rate and regeneration efficiency than other mixtures. The regeneration energy of this mixture was also calculated as 28.6 kJ/mol of CO2, which is 32% less than that of baseline 30 wt% MEA. Furthermore, the physicochemical properties such as density, viscosity and surface tension for all the solvent blends were studied experimentally.The vitreous body is a viscoelastic gel-like network that fills the space between the lens and the retina in the eye. With aging, the vitreous undergoes a liquefaction process in which liquid pockets form in the gel network, thereby motivating the detachment of the vitreous from the retina in a process known as posterior vitreous detachment (PVD). The PVD process may lead to the formation of floaters and even result in partial or complete loss of vision. Experiments show that the liquefaction and the PVD processes alter the mechanical properties of the vitreous. In this work, we propose a microscopically motivated model that characterizes the changes in the mechanical properties of the vitreous due to aging. To this end, we distinguish between four vitreous states a homogeneous vitreous, a liquefied vitreous, a vitreous that undergoes partial PVD, and a vitreous with full PVD. The model predicts the time-dependent and the steady-state response of the vitreous in each of the four states. The proposed framework is validated through a comparison with various experimental findings and captures the softening of the vitreous due to aging. We illustrate the importance of the age at which the PVD process begins and of the rate of the detachment process. In addition, we introduce a quantifiable parameter that describes the stage of PVD in the eye. Lastly, we employ our model to investigate the possibility of restoring the mechanical properties of a vitreous that has undergone PVD through the addition of reinforcing fibers to the gel. This work provides insight into the consequences of the age-related changes in the microstructure of the eye and serves as a motivation for new therapeutic measures.
Cell based therapy in cartilage repair predominantly involves the use of chondrocytes and mesenchymal stromal cells (MSC). Co-culture systems, due to their probable synergistic effect on enhancement of functional chondrogenesis and reduction in terminal differentiation have also been attempted. Chondroprogenitors, derived from articular cartilage and regarded as MSCs, have recently garnered interest for consideration in cartilage regeneration to overcome limitations associated with use of conventional cell types. The aim of this study was to assess whetherco-culturing bone marrow (BM)-MSCs and chondroprogenitors at different ratios would yield superior results in terms of surface marker expression, gene expression and chondrogenic potential.
Human BM-MSCs and chondroprogenitors obtained from three osteoarthritic knee joints and subjected to monolayer expansion and pellet cultures (10,000 cells/cm
) as five test groups containing either monocultures or co-cultures (MSC chondroprogenitors) at three different ratios (7525, 5050 and 2575) were utilized.
Website: https://www.selleckchem.com/products/8-oh-dpat-8-hydroxy-dpat.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team