NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Retrospective scientific look at a no-prep porcelain veneer process.
A two-wave photoconductive system dependent on the nonlinear optical absorption in carbon nano-tubes is presented. Optical irradiation at 532 nm wavelength and 1 nanosecond pulse duration was employed for performing the experiments. A vectorial two-wave mixing configuration was used in order to measure the absorptive and refractive nonlinearities. A single-beam transmittance technique was carried out to evaluate the photoconductivity and also it allows us to confirm the participation of the nonlinear optical absorption displayed by the samples. A two-photon absorption effect was identified as the main physical mechanism associated to the third order absorptive nonlinearity. The exclusive disjunctive logic function was achieved by the optoelectronic response of an interferometric configuration. An ultrasonic spray pyrolysis processing route was utilized for the preparation of the samples. The morphology of the nanotubes was estimated by using scanning electronic microscopy. By combining the photoconductive response of two different carbon nanotubes thin film samples, a straightforward XOR encryption was performed.Aluminum is one of the most widely used nonferrous metals and an important industrial material, especially for automotive coatings. However, potential toxicity caused by aluminum in humans limits the used of this metal. α-alumina is the most stable form of aluminum in various phases. Although the results of studies evaluating the dermal toxicity of α-alumina remained unclear, this compound can still be used as a pigment in cosmetics for humans. In the current study, we further evaluated the dermal cytotoxic effects of α-alumina on human skin cells and an in vivo mouse model. We also measured the in vitro penetration profile of flake-like α-alumina in porcine skin and assessed the degree of cellular metabolic disorders. Our findings demonstrated that treatment with flake-like α-alumina did not significantly affect cell viability up to 24 h. This compound was found to have a non-penetration profile based on a Franz modified diffusion cell assay. In addition, flake-like α-alumina was not found to induce dermal inflammation as assessed by histology of epidermal architecture, hyperplasia, and the expression of Interleukin-1β and Cyclooxygenase-2. Results of the cellular metabolic disorder assay indicated that flake-like α-alumina does not exert a direct effect on human skin cells. Taken together, our findings provided not only evidence that flake-like α-alumina may serve as a pearlescent pigment in cosmetics but also experimental basis utilizing α-alumina for human application. Our results also obviously provide new insight of the further toxicity study to aluminum based nanoparticles for skin.We report photoelectrochemical characteristics of sodium titanate nanobelts as a photoanode. Sodium titanate nanobelts were synthesized by hydrothermal process using titanium(IV) tetrabutoxide in a concentrated aqueous NaOH solution. The formation mechanism of sodium titanate nanobelts in the synthetic process has been comparatively studied on the control of reaction time, pH and concentration of precursors, etc. The morphology and optical property have been investigated with X-ray diffraction, scanning electron microscope, transmission electron microscope, and ultraviolet-visible spectroscopy. On the basis of their morphological and optical characteristics, sodium titanate nanobelts were applied for photoelectrochemical cell as working electrode. After transparent film of sodium titanate nanobelts is formed on the fluorine-doped tin oxide (FTO) glass by doctor blade technique, the photoelectrochemical results were discussed on the structure of photoanode of dye sensitized solar cells.We have designed and synthesized three blue emitters based on 9-naphthylanthracene derivatives connected with various electron-withdrawing group such as 4-fluorobenzene, 2,4-difluorobenzene and 2,3,4,5,6-pentafluorobenzene (1-3). Multilayered OLEDs with the structure of ITO (180 nm)/NPB (50 nm)/Blue materials 1-3 (30 nm)/TPBi (15 nm)/Liq (2 nm)/AI (100 nm) have been fabricated to investigate their electroluminescent properties. In particular, the device using 3 showed efficient blue electroluminescent properties with a luminous, power, external quantum efficiency and CIE coordinates of 0.71 cd/A, 1.98 Im/W, 1.34% at 20 mA/cm2 and (x = 0.16, y = 0.20) at 10.0 V, respectively. In addition, a deep blue OLED using 1 with CIE coordinates (x = 0.15, y = 0.11) at 10.0 V exhibited a luminous, power, external quantum efficiency of 2.12 cd/A, 3.04 Im/W and 1.17% at 20 mA/cm2, respectively.Optical properties of photonic crystal film were investigated by tuning photonic band gap (PBG). The lamellar-forming photonic films were prepared by nearly symmetric poly(styrene-b-2-vinyl pyridine) (PS-b-P2VP) block copolymers. Molecular weight of PS block and P2VP block is 52 kg/mol, and 57 kg/mol, respectively. When submerged in water, the lamellar films were swollen and show Bragg reflection in visible light region. We observed that the reflection color can be tuned by ion concentration (e.g., hydrogen or metal ion) in water. The higher concentration of hydrogen ion in solution, the longer reflectance wavelength shifted (from 537 nm to 743 nm). In addition, max-reflectance wavelength is dependent on both metal ion and the concentration. The max-reflectance wavelength is shifted from 653 nm (i.e., in water without ion) to 430 nm, 465 nm, and 505 nm for 120 mM of Ca2+, Fe2+, and Cu2+, respectively. Therefore, we can control the photonic band gap of photonic devices by changing the condition of swelling solution.Development of efficient culture and monitoring system for cell growth and production of useful materials is required for practical utilization of microalgae. In the present study, we developed a PDMS-based microreactor system for efficient, rapid culture of microalgae and monitoring of cell growth, carotenoid content under diverse culture conditions. Due to advantages of PDMS, we optimized culture conditions (light intensity, pH, nitrate depletion, carbon dioxide concentration) for improving growth rate and astaxanthin productivity in considerably less time compared to conventional culture methods using flask or well plate. In addition, we found that there was a strong linear correlation between fluorescence intensity of astaxanthin stained by Nile red and the astaxanthin content, which can be utilized as a high-throughput screening tool in microfluidic systems. In this study, the growth rate of vegetative Haematococcus pluvialis was improved by 60% in microfluidic chamber than in flask and astaxanthin was produced up to 362 mg/L under the optimal conditions (300 µmol photon/m2/s of light, 7% CO2 (v/v), and pH 7.0) using designed microfluidic devices. This result shows that microfluidic system can provide effective means to address development of microalgal strains including H. pluvialis and bioprocess.Cadmium sulfide (CdS) and cadmium selenide (CdSe) are sequentially assembled onto a nanocrystalline TiO2 film to create a quantum-dot (QD)-sensitized solar cell application by a successive ionic layer adsorption and reaction (SILAR) method. The results show that CdS and CdSe QDs have a complementary effect in the performance of light harvest of solar cell. Single-walled carbon nanotubes (SWNTs) are incorporated with a CdS/CdSe QDs solar cell by mixing them with TiC2 film to enhance electron transfer. SWNTs are also sprayed onto CdSe QDs (SWNTs onto CdSe) to apply p+ type properties of SWNTs. Absorbance is increased in a wide wavelength range. In particular, cells having the sprayed SWNTs onto the QDs show a clear increase in absorbance at a low wavelength region. The fill factor of CdS/CdSe QDs solar cell with SWNTs is higher than that without SWNTs, indicating the decrease in loss of electron from TiO2 to QDs. Short-circuit current in a QD-sensitized solar cell having SWNTs on CdSe shows maximum value. Photo-current conversion efficiency of cells is increased in both cell types containing SWNTs at 10~17% compared with pristine cells. We expect that solar cells using SWNTs will affect future energy technology and devices.Pt-Pd nanocomposite supported on polyethylenimine-functionalized carbon black (Pt-Pd/PEl-CB) was reported. Pt-Pd nanoparticles are supported on PEI-CB composite by chemical reduction of H2PtCl6 and PdCl2 using a polyol method. The concentration of Pt-Pd alloyed metals on CB was adjusted to 20 wt%. The physical properties of nanocomposites were investigated by transmission electron microscopy (TEM) and X-ray diffraction (XRD), respectively. The electrochemical properties of Pt-Pd nanocomposites were confirmed by cyclic voltammetries (CVs). The fundamental electrochemical test results indicated that the electrocatalytic activities of a PEI-CB supported Pt-Pd nanocomposite were better than pristine CB supported Pt-Pd nanocomposite, which was attributed to the increase of the conductivity and the facile removal of intermediate poisoning species with the aid of Pt-Pd.Bi2O3 is highly sensitive to low concentrations of NO2 in ambient air and are almost insensitive to most other common gases. However, it still remains a challenge to enhance their sensing performance and detection limit. This study examined the influence of the functionalization of Bi2O3 nanorods with Pt on the NO2 gas sensing properties. Pt-functionalized β-Bi2O3 nanorods were fabricated by the thermal evaporation of Bi powder followed by sputter-deposition of Pt and annealing. The Pt-functionalized nanorods ranged from 100 to 300 nm in diameter and from a few tens to a few hundreds of micrometers in length. https://www.selleckchem.com/products/tetrazolium-red.html Multiple networked Pt-functionalized β-Bi2O3 nanorod sensors showed the responses of ~141 to ~313% at 1-5 ppm NO2 at 300 °C. These response values were 1.23-1.93 times higher than those of pristine Bi2O3 nanorod sensors at 1-5 ppm NO2. The origin of the enhancement of the sensing properties of the Bi2O3 nanorods by Pt functionalization is discussed.The copper thin films were deposited by Atomic layer deposition (ALD) on a ruthenium depending on the substrate temperatures. The substrate deposited Ru and TaN on SiO2 by plasma enhanced ALD (PEALD) before Cu deposition for an adhesion layer between Si and Cu. The copper thin films were deposited 200 cycles. The thickness of Cu was different depending on the substrate temperatures. The properties of copper thin films were investigated by a 4 point probe, SEM, and AFM. TaN and Ru layers were deposited by plasma enhanced ALD (PEALD) for the adhesion layer. Also, TaN and Ru layers were observed as TEM because the thickness was too thin. The thickness and roughness of Cu thin film increased depending on the deposition temperatures but, Cu thin film was not deposited at 110 °C. The best sheet resistance of the copper thin film was obtained at a deposition temperature of 170 °C.We report a facile method for surface-initiated ring opening polymerization (ROP) and atom transfer radical polymerization (ATRP) via a poly(norepinephrine) coating. Solid substrates were modified by poly(norepinephrine) under alkaline conditions, with concurrent co-adsorption of an ATRP initiator. The poly(norepinephrine) layer acted as a ROP initiator due to the presence of hydroxyl groups in its side chain, resulting in a surface that was able to initiate ATRP and ROP simultaneously. ε-Caprolactone (ε-CL) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) were grafted onto the surface via ROP and ATRP, respectively, and the polymers subsequently grown from the surfaces were characterized in detail using Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), contact angle goniometry, and atomic force microscopy (AFM).
Homepage: https://www.selleckchem.com/products/tetrazolium-red.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.