NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Kid and also neonatal tracheostomy health professional education and learning along with phased sim to improve proficiency and also improve problem management.
This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.Soils play a key role in meeting the UN Sustainable Development Goals (SDGs). In this study, we review the contribution of soils to the regulation of air quality, which is one of 'Nature's Contributions to People' identified by the Intergovernmental-Policy Platform on Biodiversity and Ecosystem Services (IPBES). This is particularly relevant for SDG3 (health and well-being) and 11 (sustainable cities and well-being) but also impacts other SDGs. Soils can act as both a source and a sink of air pollutants (and their precursors). In addition, soils support plant growth which plays a major role in regulating air quality. The scale of the soil impacts on air quality range from global (e.g. greenhouse gas fluxes, stratospheric ozone depletion) to local (e.g. odours, particulates, pathogen transport). Harmful emissions from soil can be increased or decreased by anthropogenic activity, while climate change is likely to modify future emissions patterns, both directly and in response to human mitigation and adaption actions. Although soils are not the only source of these pollutants, it is worthwhile managing them to reduce erosion and nutrient losses to maintain soil health so we may continue to benefit from the contributions to good quality of life they provide. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.Intact, 'healthy' soils provide indispensable ecosystem services that largely depend on the biotic activity. Soil health is connected with human health, yet, knowledge of the underlying soil functioning remains incomplete. This review highlights selected services, i.e. (i) soil as a genetic resource and hotspot of biodiversity, forming the basis for providing (ii) biochemical resources and (iii) medicinal services and goods. Soils harbour an unrivalled biodiversity of organisms, especially microorganisms. Some of the abilities of autochthonous microorganisms and their relevant enzymes serve (i) to improve natural soil functions and in particular plant growth, e.g. through beneficial plant growth-promoting, symbiotic and mycorrhizal microorganisms, (ii) to act as biopesticides, (iii) to facilitate biodegradation of pollutants for soil bioremediation and (iv) to yield enzymes or chemicals for industrial use. Soils also exert direct effects on human health. Contact with soil enriches the human microbiome, affords protection against allergies and promotes emotional well-being. Medicinally relevant are soil substrates such as loams, clays and various minerals with curative effects as well as pharmaceutically active organic chemicals like antibiotics that are formed by soil microorganisms. By contrast, irritating minerals, soil dust inhalation and misguided soil ingestion may adversely affect humans. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People.Ongoing environmental changes are affecting physical, chemical and biological soil components. Evidence of impacts of soil changes on pollinators' and seed dispersers' behaviour, fitness and density is scarce, but growing. Here, we reviewed information on such impacts and on a number of mechanisms that may explain its propagation, taking into account the full range of resources required by the large and diverse number of species of these two important functional groups. We show that while there is substantial evidence on the effects of soil nitrogen enrichment and changes in soil water content on the quality and quantity of floral and fruit resources, little is known on the effects of changes of other soil properties (e.g. soil pH, soil structure, other nutrients). Also, the few studies showing correlations between soil changes and pollinator and seed disperser foraging behaviour or fitness do not clearly identify the mechanisms that explain such correlation. Finally, most studies (including those with nitrogen and water) are local and limited to a small number of species, and it remains unclear how variable such effects are across time and geographical regions, and the strength of interactive effects between soil properties. Increasing research on this topic, taking into consideration how impacts propagate through species interaction networks, will provide essential information to predict impacts of ongoing environmental changes and help guide conservation plans that aim to minimize impacts on ecosystem functioning. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.The need for a vast quantity of new buildings to address the increase in population and living standards is opposed to the need for tackling global warming and the decline in biodiversity. To overcome this twofold challenge, there is a need to move towards a more circular economy by widely using a combination of alternative low-carbon construction materials, alternative technologies and practices. Soils or earth were widely used by builders before World War II, as a primary resource to manufacture materials and structures of vernacular architecture. Centuries of empirical practices have led to a variety of techniques to implement earth, known as rammed earth, cob and adobe masonry among others. Earth refers to local soil with a variable composition but at least containing a small percentage of clay that would simply solidify by drying without any baking. GSK-4362676 cell line This paper discusses why and how earth naturally embeds high-tech properties for sustainable construction. Then the potential of earth to contribute to addressing the global challenge of modern architecture and the need to re-think building practices is also explored. The current obstacles against the development of earthen architecture are examined through a survey of current earth building practitioners in Western Europe. A literature review revealed that, surprisingly, only technical barriers are being addressed by the scientific community; two-thirds of the actual barriers identified by the interviewees are not within the technical field and are almost entirely neglected in the scientific literature, which may explain why earthen architecture is still a niche market despite embodying all the attributes of the best construction material to tackle the current climate and economic crisis. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.This theme issue provides an assessment of the contribution of soils to Nature's Contributions to People (NCP). The papers in this issue show that soils can contribute positively to the delivery of all NCP. These contributions can be maximized through careful soil management to provide healthy soils, but poorly managed, degraded or polluted soils may contribute negatively to the delivery of NCP. Soils are also shown to contribute positively to the UN Sustainable Development Goals. Papers in the theme issue emphasize the need for careful soil management. Priorities for soil management must include (i) for healthy soils in natural ecosystems, protect them from conversion and degradation, (ii) for managed soils, manage in a way to protect and enhance soil biodiversity, health, productivity and sustainability and to prevent degradation, and (iii) for degraded soils, restore to full soil health. Our knowledge of what constitutes sustainable soil management is mature enough to implement best management practices, in order to maintain and improve soil health. The papers in this issue show the vast potential of soils to contribute to NCP. This is not only desirable, but essential to sustain a healthy planet and if we are to deliver sustainable development in the decades to come. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.Soil and soil biodiversity play critical roles in Nature's Contributions to People (NCP) # 10, defined as Nature's ability to regulate direct detrimental effects on humans, and on human-important plants and animals, through the control or regulation of particular organisms considered to be harmful. We provide an overview of pathogens in soil, focusing on human and crop pathogens, and discuss general strategies, and examples, of how soils' extraordinarily diverse microbial communities regulate soil-borne pathogens. We review the ecological principles underpinning the regulation of soil pathogens, as well as relationships between pathogen suppression and soil health. Mechanisms and specific examples are presented of how soil and soil biota are involved in regulating pathogens of humans and plants. We evaluate how specific agricultural management practices can either promote or interfere with soil's ability to regulate pathogens. Finally, we conclude with how integrating soil, plant, animal and human health through a 'One Health' framework could lead to more integrated, efficient and multifunctional strategies for regulating detrimental organisms and processes. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.The soil carbon (C) stock, comprising soil organic C (SOC) and soil inorganic C (SIC) and being the largest reservoir of the terrestrial biosphere, is a critical part of the global C cycle. Soil has been a source of greenhouse gases (GHGs) since the dawn of settled agriculture about 10 millenia ago. Soils of agricultural ecosystems are depleted of their SOC stocks and the magnitude of depletion is greater in those prone to accelerated erosion by water and wind and other degradation processes. Adoption of judicious land use and science-based management practices can lead to re-carbonization of depleted soils and make them a sink for atmospheric C. Soils in humid climates have potential to increase storage of SOC and those in arid and semiarid climates have potential to store both SOC and SIC. Payments to land managers for sequestration of C in soil, based on credible measurement of changes in soil C stocks at farm or landscape levels, are also important for promoting adoption of recommended land use and management practices. In conjunction with a rapid and aggressive reduction in GHG emissions across all sectors of the economy, sequestration of C in soil (and vegetation) can be an important negative emissions method for limiting global warming to 1.5 or 2°C This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.Soils are the fundament of terrestrial ecosystems. Across the globe we find different soil types with different properties resulting from the interacting soil forming factors parent material, climate, topography, organisms and time. Here we present the role of soils in habitat formation and maintenance in natural systems, and reflect on how humans have modified soils from local to global scale. Soils host a tremendous diversity of life forms, most of them microscopic in size. We do not yet know all the functionalities of this diversity at the level of individual taxa or through their interactions. However, we do know that the interactions and feedbacks between soil life, plants and soil chemistry and physics are essential for soil and habitat formation, maintenance and restoration. Moreover, the couplings between soils and major cycles of carbon, nutrients and water are essential for supporting the production of food, feed and fibre, drinking water and greenhouse gas balances. Soils take thousands of years to form, yet are lost very quickly through a multitude of stressors.
Here's my website: https://www.selleckchem.com/products/ide397-gsk-4362676.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.