NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Joining With Electronic Human beings: Just how Other People Adjust Our own Views regarding and also Actions together with Electronic Teammates.
CAPSULE The compositions of toxic metal(loid)s in PM1.0, and the populations of potential pathogens in PM10-2.5 and PM2.5-1.0, were dominated by that from wastewater.Enhancing the performance of adsorbents to the utmost extent is an objective but challenging in applying adsorption technology to wastewater treatment. In this work, novel quaternary ammonium polymers (QAPs) with high density adsorption site (i.e., quaternized N, confirmed by FT-IR results) were designed and prepared for rapid selective removal of Cr(VI) from water. The results of EDS analysis indicated the maximum exposure rate of N on the surface of QAPs was as high as 86.1%, which almost doubled comparing to that of Cr(VI) ions imprinted polymers (Cr(VI)-IIP) (46.2%). Interestingly, the maximum adsorption capacity (211.8 mg/g) and initial adsorption rate (h0, 66.6 mg/ (g·min)) of QAPs (i.e., 51(TRIM)) for Cr(VI) are about 3.6 times and 4.9 times those of Cr(VI)-IIP (63.0 mg/g and 13.5 mg/(g·min)), respectively. Impressively, flow-through adsorption experiments demonstrated 51(TRIM) can completely remove 5 mg/L of Cr(VI) within five seconds. Additionally, 51(TRIM) exhibited a remarkable selectivity for Cr(VI) adsorption, and high purity (100%) of chromium can be readily obtained. The proposed idea of high exposure effect of the adsorption site can provide a valuable guidance for designing rapid selective adsorbents to remove and reclaim Cr(VI) from wastewater.Alkali-activated binders (AABs) stand out as a sustainable alternative to ordinary Portland cement (OPC) as they can be formulated using by-products or waste as raw materials. However, the presence of hazardous compounds in residues can lead to an increase in AABs' toxicity due to the highly alkaline media. Therefore, it is extremely important to evaluate their environmental risks to validate their use as building materials. This study environmentally assessed AABs prepared with two different fractions (0-30 mm and 8-30 mm) of weathered bottom ash (AA-WBA) from WtE plants. The potential leachate toxicity of AA-WBA was assessed using granular and monolithic leaching tests that simulated end-of-life and service life scenarios, respectively. Furthermore, an acute toxicity test with crustacean Daphnia magna as model organisms was conducted to determine the relationship between the leachate metal(loid) concentrations and the ecotoxicity of AA-WBA. The results showed higher metal(loid) concentrations in AA-WBA specimens prepared with the 0-30 mm fraction of WBA. FDA-approved Drug Library The service life scenario revealed multiple metal(loid)-release mechanisms. The 48 h EC50 value (close to 10%; moderate toxicity) indicated that the use of the coarse fraction of WBA increased the immobilisation of the metal(loid)s. Finally, the correlation between the concentrations of some of the metal(loid)s and toxicity was demonstrated.Understanding the nature of active sites on metal oxide catalysts in the selective catalytic reduction (SCR) of NO by NH3 (NH3-SCR) is a crucial prerequisite for the development of novel efficient NH3-SCR catalysts. In this work, two CeO2-based SCR catalyst systems with diverse acidic metal oxides-CeO2 interfaces, i.e., Nb2O5-CeO2 (Nb2O5/CeO2 and CeO2/Nb2O5) and WO3-CeO2 (WO3/CeO2 and CeO2/WO3), were prepared and used to reveal the relationship between NH3-SCR activity and surface acidity/redox properties. In combination with the results of the NH3-SCR activity test and various characterizations, it was found that the NH3-SCR performance of Nb2O5-CeO2 and WO3-CeO2 catalysts was highly dependent on the strong interactions between the redox component (CeO2) and acidic component (Nb2O5 or WO3), as well as the amount of paired redox-acid sites. From a quantitative perspective, an activity-surface acidity/redox property relationship was proposed. For both Nb2O5-CeO2 and WO3-CeO2 catalysts systems operated at the more concerned low-temperature range (200 °C), the NH3-SCR activity in low NOx conversion region ( 40%) was more determined by redox properties.The adsorbents with high adsorption capacity for simultaneously removing Cr(VI) and Hg(II) from aqueous solutions under broad working pH range are highly desirable but still extremely scarce. Here, a novel adsorbent with multidentate ligands was facilely fabricated by covalently bonding 4-amino-3-hydrazino-5-mercapto- 1,2,4-triazole on graphene oxide via the Schiff's base reaction. The maximum adsorption capacities of Cr(VI) and Hg(II) on the current adsorbent were 734.2 and 1091.1 mg/g, which were 14.36 and 5.61 times higher than that of the pure graphene oxide, respectively, exceeding those of most adsorbents previously reported. More interestingly, Cr(VI) and Hg(II) concentrations were decreased from 2 mg/L to 0.0001 mg/L for Hg(II) and 0.004 mg/L for Cr(VI), far below the WHO recommended threshold for drinking water. Moreover, the adsorbent shows an excellent performance for simultaneous removal of Cr(VI) and Hg(II) with more than 99.9% and 98.6% removal efficiencies in aqueous solutions. Finally, the adsorbent was successfully applied in dealing with the real industrial effluent, implying huge potential in industrial application. This work offers a new possibility for the removal of the metallic contaminants by rational designing target groups and ligands.Extracellular polymeric substances (EPSs) constitute a largely global carbon pool that could participate in geochemical process of organic chemicals. Besides the chemical hydrolysis and redox of chemicals exerted by the EPS, weakly noncovalent interactions with dispersive EPS control the toxicity of numerous organic compounds. Nevertheless, there has been a lack of in-depth research on this issue. This work quantified a chain of links from bonding to detoxification using natural biofilms to explore the control behavior of fragile noncovalent bonding to the ecotoxicity of aromatic compounds. Such bonding decreases cell absorbability of m-phenylenediamine, 2-naphthol, and phenanthrene by 5.3-53.6%, resultantly increasing the indices of microbial diversity by 122.2-279.5%. Herein, the 60 kDa chaperonin in EPS acts as the most important contributor (16.4% of the top 20 proteins) to noncovalent interactions. Hydrophilic carboxyl groups in EPS bind with hydroxyl and amino groups of m-phenylenediamine and 2-naphthol via H-bonds, respectively. Methylene and carboxyl groups combine with hydrophobic phenanthrene via CH···π and H-bonding, respectively. A quantified chain was consequently established that weak interaction linearly controls ecotoxicity of aromatic compounds via the above suppressive cell absorbability of aromatic compounds (R2 =0.82). Considering ubiquitous EPS and prevailing aromatic compounds, our findings revealed a previously unnoticed phenomenon in which seemingly fragile noncovalent bonding profoundly alleviates the ecotoxicity of aromatic compounds in Earth's surface system.Selenium is one of the hazardous trace elements emitted from coal-fired power plants. The distribution of selenium in Wet Flue Gas Desulfurization (WFGD) process is still unclear and even in controversial, impeding the development of selenium removal technologies. This research has found that the selenite in simulated slurry could be reduced by SO2 while selenate has not been affected. Characterization methods including X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to provide an evidence that the product of the reduction reaction is amorphous elemental selenium. Meanwhile, the influences of other gaseous components, pH, temperature and S2O82- in simulated slurry has also been considered in this research. It is found that with the increase of SO2 concentration in flue gas, the reduction of selenite increased and the reduction reaction is an exothermic reaction. Meanwhile, the oxidation effect of S2O82- competes with the reduction effect of SO2. This study introduced the influence of flue gas into the research of the conversion of selenium in FGD slurry and indicate the effect of flue gas on the potential emission treatment techniques of selenium in FGD slurry.Biochar adsorbents for removing As(III) suffer from the problems of low adsorption capacity and ineffective removal. Herein, a granular MgO-embedded biochar (g-MgO-Bc) adsorbent is fabricated in the form of millimeter-sized particles through a simple gelation-calcination method using chitosan as biochar sources. High-density MgO nanoparticles are evenly dispersed throughout the biochar matrix and can be fully exposed to As(III) through the rich pores in g-MgO-Bc. These features endow the adsorbent with a high adsorption capacity of 249.1 mg/g for As(III). The g-MgO-Bc can efficiently remove As(III) over a wide pH of 3-10. The coexisting carbonate, nitrate, sulfate, silicate, and humic acid exert a negligible influence on As(III) removal. 300 μg/L of As(III) can be purified to far below 10 μg/L using only 0.3 g/L g-MgO-Bc. The spent g-MgO-Bc could be well regenerated by simple calcination. In fixed-bed column experiments, the effective treatment volume of As(III)-spiked groundwater achieves 1500 BV (30 L) (3 g of adsorbent, solution flow rate of 2.0 mL/min, C0 = 50 μg/L). The Mg(OH)2 generated in situ in g-MgO-Bc is responsible for the adsorption of As(III) through the inner-sphere complex mechanism. The work would extend the potential applicability of biochar adsorbent for As(III) removal to a great extent.Metal pollution poses a significant threat to ecological security and human health. Current research on the causes, sources and distribution of metal pollution in the Yangtze River plain is lacking. This study investigated the accumulation, risk, distribution, and sources of heavy metals in 62 lakes along the Yangtze River, and analyzed the relationship between river-lake connectivity, economic structure, population and metal diffusion. The mean concentrations of Cr, Cu, Hg, Zn, Cd, Pb and As in the surface sediments of these lakes were 90.8, 60.1, 0.06, 102, 0.89, 42.7, and 6.01 mg/kg, respectively. Most (99%) of the lake sediments were contaminated with Cd, and the lakes in the middle reach and southern bank of the Yangtze River had a higher ecological risk. Cr originated from the natural environment, whereas Zn, Cu, Pb, Cd and As were affected by human activities. The lakes disconnected from the Yangtze River had higher concentrations of Cu, Zn, Pb and As, while the lakes connected to the river had higher concentrations of Cd and Cr. This comprehensive analysis determined the pollution characteristics of heavy metals, illustrated the causes of non-point pollution in the Yangtze River plain, and showed that soil-water erosion is important in metal diffusion.Tobacco is a well-documented threat to human health. However, its environmental impact has only recently been considered. Metals can interact with cigarette butts (CBs) being transported in the marine environment and reaching organisms. To understand this mechanism, a series of metal(loid)s were analyzed in cigarette filters (virgin, artificially smoked, leached in seawater and aged in beach and harbour) as well as in artificially contaminated oyster tissues. Smoked filters showed higher levels of metals compared to the virgin ones showing enrichment factors up to 90, probably associated with tobacco metal content. Once the CBs are delivered to the environment, metals can be leached to seawater until reaching equilibrium, which may be dependent on initial metal levels in the water. Copper was the element with the highest percentage of desorption (91 ± 3%) while strontium showed the lowest percentage (40 ± 0%). CBs revealed a great capacity to accumulate metals from the environment when weathered in contaminated areas.
Read More: https://www.selleckchem.com/screening/fda-approved-drug-library.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.