Notes
Notes - notes.io |
Polycystic ovary syndrome (PCOS) is a common endocrine disorder that affects women of reproductive age. Metabolic consequences associated with PCOS include, but are not limited to, insulin resistance (IR), type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). This narrative review aims to provide a comprehensive overview of the potential therapeutic roles of the incretin-based therapies in the management of PCOS.
We performed a systematic search of databases including PubMed, MEDLINE and EMBASE up to 1 October 2020. We developed a search string of medical subject headings (MeSH) including the terms PCOS, incretin mimetics, glucagon-like peptide-1 (GLP-1), glucagon-like peptide-1 receptor antagonists (GLP-1 RAs), liraglutide, exenatide, semaglutide, dipeptidyl peptidase-4 (DPP-4) inhibitors, combined with IR, testosterone and sex hormone-binding globulin (SHBG).
We identified 854 relevant articles and, after the initial screening, eight interventional animal studies, one observational animal study, 14 interventional human studies, two case-control studies and one systematic review were included. These studies showed the potential significant roles of GLP-1 RAs and DPP-4 inhibitors in the management of PCOS, with significant improvements in the metabolic parameters, including substantial weight reduction and improved insulin sensitivity. These agents also improved the hormonal parameters through decreased free androgen and increased SHBG. Moreover, they improved menstrual regularity, increased fertility with enhanced ovulation and pregnancy in obese women with PCOS.
GLP-1 RAs and DPP-4 inhibitors have a promising therapeutic role in PCOS; however, larger clinical trials are needed to establish the role of incretin-based therapies in the management of PCOS.
GLP-1 RAs and DPP-4 inhibitors have a promising therapeutic role in PCOS; however, larger clinical trials are needed to establish the role of incretin-based therapies in the management of PCOS.
Transgender individuals receiving gender-affirming hormone therapy (GAHT) are at increased risk of adverse cardiovascular outcomes. This may be related to effects on body composition and insulin resistance.
To examine relationships between body fat distribution and insulin resistance in transgender individuals on established GAHT.
Comparisons of body composition (dual energy X-ray absorptiometry) and insulin resistance [Homeostasis Model of Insulin Resistance (HOMA2-IR)] were made between transgender individuals (43 trans men and 41 trans women) on established GAHT (>12 months) and age-matched cisgender controls (30 males and 48 females). Multiple linear regressions were used to examine the relationship between HOMA2-IR and fat mass with gender, adjusting for age and total duration of GAHT and Pearson correlation coefficients are reported.
Compared with control cisgender women, trans men had mean difference of +7.8 kg (4.0, 11.5),
< 0.001 in lean mass and higher androidgynoid fat ratio [0.2 (ardiovascular risk. Despite adverse fat distribution, insulin resistance was not higher in trans men.The global burden of heart failure (HF) is on the rise owing to an increasing incidence of lifestyle related diseases, predominantly type 2 diabetes mellitus (T2D). Diabetes is an independent risk factor for cardiovascular disease, and up to 75% of those with T2D develop HF in their lifetime. T2D leads to pathological alterations within the cardiovascular system, which can progress insidiously and asymptomatically in the absence of conventional risk factors. Reduced exercise tolerance is consistently reported, even in otherwise asymptomatic individuals with T2D, and is the first sign of a failing heart. Because aggressive modification of cardiovascular risk factors does not eliminate the risk of HF in T2D, it is likely that other factors play a role in the pathogenesis of HF. Early identification of individuals at risk of HF is advantageous, as it allows for modification of the reversible risk factors and early initiation of treatment with the aim of improving clinical outcomes. In this review, cardiac and extra-cardiac contributors to reduced exercise tolerance in people with T2D are explored.
To observe the characteristics of sacral reflex and sympathetic skin reflex in patients with Parkinson's disease (PD) and multiple system atrophy P-type (MSA-P) and to analyze their value as a differential diagnostic method.
The data of 30 healthy people, 58 PD patients, and 52 MSA-P patients from the First Affiliated Hospital of Wenzhou Medical University were collected. Electrophysiological bulbocavernosus reflex (BCR) and sympathetic skin response (SSR) were evaluated using the Keypoint EMG/EP system. The latency period, amplitude, and extraction rate of BCR and SSR were compared between the control, PD, and MSA-P groups.
The incidence of the related autonomic damage in the PD group was lower than that of the MSA-P group. For BCR, the latency period was shorter and the amplitude and elicitation rates were lower in the PD group than in the MSA-P group. For SSR, the latency period was longer in the MSA-P and PD groups than in the control group, but the difference was not statistically significant.
SSR cannot be used to assess autonomic nerve function. PD patients can have clinical symptoms similar to those of MSA-P patients, but the incidence is lower. Both MSA-P and PD patients have a damage to the BCR arc, but the MSA-P patients have a more severe damage.
SSR cannot be used to assess autonomic nerve function. PD patients can have clinical symptoms similar to those of MSA-P patients, but the incidence is lower. Both MSA-P and PD patients have a damage to the BCR arc, but the MSA-P patients have a more severe damage.Expanded polyglutamine (polyQ) sequences cause numerous neurodegenerative diseases which are accompanied by the formation of polyQ fibrils. The unique role of glutamines in the aggregation onset is undoubtedly accepted and a lot structural data of the fibrils have been acquired, however side-chain specific structural dynamics inducing oligomerization are not well understood yet. To analyze spectroscopically the nucleation process, we designed various template-assisted glutamine-rich β-hairpin monomers mimicking the structural motif of a polyQ fibril. In a top-down strategy, we use a template which forms a well-defined stable hairpin in solution, insert polyQ-rich sequences into each strand and monitor the effects of individual glutamines by NMR, CD and IR spectroscopic approaches. The design was further advanced by alternating glutamines with other amino acids (T, W, E, K), thereby enhancing the solubility and increasing the number of cross-strand interacting glutamine side chains. Our spectroscopic studies reveal a decreasing hairpin stability with increased glutamine content and demonstrate the enormous impact of only a few glutamines - far below the disease threshold - to destabilize structure. Furthermore, we could access sub-ms conformational dynamics of monomeric polyQ-rich peptides by laser-excited temperature-jump IR spectroscopy. Both, the increased number of interacting glutamines and higher concentrations are key parameters to induce oligomerization. Concentration-dependent time-resolved IR measurements indicate an additional slower kinetic phase upon oligomer formation. The here presented peptide models enable spectroscopic molecular analyses to distinguish between monomer and oligomer dynamics in the early steps of polyQ fibril formation and in a side-chain specific manner.Retrosynthetic analysis is a cornerstone of modern natural product synthesis, providing an array of tools for disconnecting structures. However, discussion of retrosynthesis is often limited to the reactions used to form selected bonds in the forward synthesis. This review details three strategies for retrosynthesis, focusing on how they can be combined to plan the synthesis of polycyclic natural products, such as atropurpuran and the related arcutane alkaloids. Recent syntheses of natural products containing the arcutane framework showcase how these strategies for retrosynthesis can be combined to plan the total synthesis of highly caged scaffolds. Comparison of multiple syntheses of the same target provides a unique opportunity for detailed analysis of the impact of retrosynthetic disconnections on synthesis outcomes.Proteins span an extraordinary range of shapes, sizes and functionalities. Therefore generic approaches are needed to overcome this diversity and stream-line protein analysis or application. Here we review SpyTag technology, now used in hundreds of publications or patents, and its potential for detecting and controlling protein behaviour. SpyTag forms a spontaneous and irreversible isopeptide bond upon binding its protein partner SpyCatcher, where both parts are genetically-encoded. New variants of this pair allow reaction at a rate approaching the diffusion limit, while reversible versions allow purification of SpyTagged proteins or tuned dynamic interaction inside cells. Anchoring of SpyTag-linked proteins has been established to diverse nanoparticles or surfaces, including gold, graphene and the air/water interface. SpyTag/SpyCatcher is mechanically stable, so is widely used for investigating protein folding and force sensitivity. A toolbox of scaffolds allows SpyTag-fusions to be assembled into defined multimers, from dimers to 180-mers, or unlimited 1D, 2D or 3D networks. Icosahedral multimers are being evaluated for vaccination against malaria, HIV and cancer. For enzymes, Spy technology has increased resilience, promoted substrate channelling, and assembled hydrogels for continuous flow biocatalysis. Combinatorial increase in functionality has been achieved through modular derivatisation of antibodies, light-emitting diodes or viral vectors. In living cells, SpyTag allowed imaging of protein trafficking, retargeting of CAR-T cell killing, investigation of heart contraction, and control of nucleosome position. The simple genetic encoding and rapid irreversible reaction provide diverse opportunities to enhance protein function. We describe limitations as well as future directions.
The outbreak of coronavirus disease 2019 (COVID-19) was first reported in December 2019. Until now, many drugs and methods have been used in the treatment of the disease. However, no effective treatment option has been found and only case-based successes have been achieved so far. This study aims to evaluate COVID-19 treatment options using multicriteria decision-making (MCDM) techniques.
In this study, we evaluated the available COVID-19 treatment options by MCDM techniques, namely, fuzzy PROMETHEE and VIKOR. These techniques are based on the evaluation and comparison of complex and multiple criteria to evaluate the most appropriate alternative. STO-609 chemical structure We evaluated current treatment options including favipiravir (FPV), lopinavir/ritonavir, hydroxychloroquine, interleukin-1 blocker, intravenous immunoglobulin (IVIG), and plasma exchange. The criteria used for the analysis include side effects, method of administration of the drug, cost, turnover of plasma, level of fever, age, pregnancy, and kidney function.
The results showed that plasma exchange was the most preferred alternative, followed by FPV and IVIG, while hydroxychloroquine was the least favorable one.
Here's my website: https://www.selleckchem.com/products/sto-609.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team